BAB III

LANDASAN TEORI

Landasan teori adalah dasar – dasar yang digunakan dalam pembuatan kerja praktek ini, sebagai langkah awal dalam menyusun Laporan Kerja Praktek perlu dipahami terlebih dahulu konsep dasar *system* informasi yang berbasis komputer yang diperlukan sebagai dasar pengembangan suatu *system* informasi yang memanfaatkan teknologi informasi.

3.1 *Inventory*

Definisi *Inventory* Ristono (2009:1) adalah suatu teknik untuk manajemen material yang berkaitan dengan persediaan. Definisi *inventory* Rangkuti (2004:1) mengatakan bahwa persediaan merupakan suatu aktiva yang meliputi barangbarang milik perusahaan dengan maksud untuk dijual dalam suatu periode usaha tertentu, atau persediaan barang-barang yang masih dalam pengerjaan atau proses produksi, ataupun persediaan bahan baku yang menunggu penggunaannya dalam suatu proses produksi. Definisi *Inventory* Tampubolon (2004:190) yang mengatakan bahwa mengefektifkan sistem persediaan bahan, efisiensi operasional perusahaan dapat ditingkatkan melalui fungsi persediaan dengan mengefektifkan:

- 1. Fungsi Decoupling
- 2. Fungsi *Economic Size* dan
- 3. Fungsi *Antisipasi*

3.2 Analisis Sistem

Menurut Hartono (2005:129) analisis sistem dapat didefinisikan sebagai penguraian dari suatu sistem informasi yang utuh ke dalam bagian-bagian komponennya dengan maksud untuk mengidentifikasikan dan mengevaluasi permasalahan-permsalahan, kesempatan-kesempatan, hambatan-hambatan yang terjadi dan kebutuhan-kebutuhan yang diharapkan sehingga dapat diusulkan perbaikan – perbaikannya. Tahap analisis dilakukan setelah tahap perencanaan sistem dan sebelum tahap desain sistem.

3.3 Sistem

Menurut Hartono (2005:2) dalam buku yang berjudul Analisis dan Desain Sistem Informasi, menjelaskan bahwa sistem adalah kumpulan dari elemen-elemen yang berinteraksi untuk mencapai suatu tujuan-tujuan tertentu". Menurut Ladjamudin (2005:1) dalam bukunya terbitan Graha Ilmu di Yogyakarta yang berjudul Analisis dan Desain Sistem Informasi, untuk memahami sistem digunakan dua pendekatan yaitu pendekatan prosedur dan pendekatan komponen/elemen.

- 1. Pemahaman sistem dengan pendekatan prosedur yaitu suatu urutan kegiatan yang saling berhubungan, berkumpul bersama-sama untuk mencapai tujuan tertentu.
- 2. Pemahaman sistem dengan pendekatan elemen yaitu kumpulan komponen yang saling berkaitan dan bekerja sama untuk mencapai suatu tujuan tertentu.

3.4 Informasi

Pengertian Informasi Menurut Jogiyanto (1999: 692), "Informasi dapat didefinisikan sebagai hasil dari pengolahan data dalam suatu bentuk yang lebih

berguna dan lebih berarti bagi penerimanya yang menggambarkan suatu kejadian – kejadian (*event*) yang nyata (*fact*) yang digunakan untuk pengambilan keputusan".

3.5 Sistem Informasi

Menurut Hartono (2001: 12) mengemukakan bahwa sistem informasi terdiri dari komponen – komponen yang disebutnya dengan istilah blok bangunan (*building block*), yaitu :

1. Blok Masukan

Input mewakili data yang masuk ke dalam sistem informasi. *Input* disini termasuk metode – metode dan media untuk menangkap data yang akan dimasukkan, yang dapat berupa dokumen – dokemen dasar.

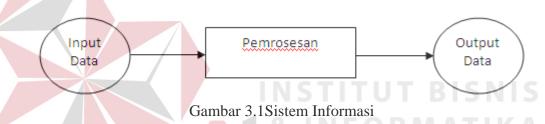
2. Blok model

Blok ini terdiri dari kombinasi prosedur, logika dan model matematik yang akan memanipulasi data *input* dan data yang tersimpan di basis data dengan cara yang udah tertentu untuk menghasilkan keluaran yang dinginkan.

3. Blok keluaran

Produk dari sistem informasi adalah keluaran yang merupakan informasi yang berkualitas dan dokumentasi yang berguna untuk semua tingkatan manajemen serta semua pemakai sistem.

4. Blok Teknologi


Teknologi merupakan "kotak alat" (*tool-box*) dalam sistem informasi. Teknologi digunakan untuk menerima input, menjalankan model, menyimpan dan mengakses data, menghasilkan dan mengirimkan keluaran dan membantu pengendalian dari sistem secara keseluruhan.

5. Blok Basis Data

Basis data (*database*)merupakan kumpulan dari data yang saling berhubungan satu dengan yang lainnya, tersimpan di perangkat keras komputer dan digunakan perangkat lunak untuk memanipulasinya.

6. Blok terkendali

Banyak hal yang dapat merusak sistem informasi, seperti misalnya bencana alam, api, temperatur, air, debu, kecurangan-kecurangan, kegagalan kegagalan sistem itu sendiri, kesalahan-kesalahan, ketidak efisien, sabotase dan lain sebagaianya.

3.6 Analisis dan Perancangan Sistem

Definisi analisis sistem menurut Hartono (2005:129) yaitu penguraian dari suatu sistem informasi yang utuh ke dalam bagian-bagian komponennya dengan maksud untuk mengidentifikasikan dan mengevaluasi permasalahan-permsalahan, kesempatan-kesempatan, hambatan-hambatan yang terjadi dan kebutuhan-kebutuhan yang diharapkan sehingga dapat diusulkan perbaikan – perbaikannya. Tahap analisis dilakukan setelah tahap perencanaan sistem dan sebelum tahap desain sistem. Dalam tahap analisis sistem menguraikan suatu informasi yang utuh ke dalam bagian – bagian yang bermaksud untuk mengidentifikasi dan melakukan evaluasi permasalahan – permasalahan yang ada. Didalam tahap analisis sistem terdapat terdapat beberapa langkah yang harus dilakaukan antara lain sebagai berikut:

- Mengidentifikasi Masalah
- Memahami kerja sistem yang ada 2.
- Menganalisis sistem 3.
- Membuat laporan 4.

Flow Chart **3.7**

Flow chart merupakan penyajian proses informasi dan proses operasi dari segi logika dan fisik, baik berupa kegiatan manual berbasis computer Diana (2011:41). Berikut ini merupakan simbol-simbol yang digunakan untuk merancang sebuah desain dari suatu sistem:

Tabel 3.1 Simbol – Simbol Flowchart

SIMBOL	KETERANGAN
Simbol Terminator	Bentuk simbol yang digunakan sebagai
	tanda di mulainya jalan proses sistem ataupun tanda akhir dari sebuah pengerjaan suatu sistem
Simbol Konektor On – Page	Simbol konektor digunakan untuk menghubungkan bagan desain pada halaman yang sama
Simbol Konektor Off – Page	Simbol konektor digunakan untuk menghubungkan bagan desain pada
	halaman yang berbedal
Simbol Proses	Menunjukan kegiatan proses dari operasi program terkomputerisasi

Simbol Manual Operation	Menunjukan sebuah proses kerja yang dilakukan tanpa menggunakan komputer sebagai medianya (menggunakan proses manual)
Simbol Dokumen	Dokumen atau laporan : dokumen tersebut dapat dipersiapkan dengan tulisan tangan
Simbol Manual Input	Simbol untuk pemasukan data secara manual on-line keyboard.
Simbol Keputusan	Langkah pengambilan keputusan: dipergunakan dalam sebuah program kemputer bagan alir untuk memperlihatkan pembuatan cabang ke jalan alternatif
Simbol Database	Media penyimpanan data yang bersifat terkomputerisasi

3.8 Data Flow Diagram

Menurut Kendall (2003:241), intinya *Data Flow Diagram* menggambarkan model logika untuk menggambarkan asal suatu data dan kemana tujuan data tersebut keluar dari sistem, termasuk juga dimana data disimpan, roses apa yang menghasilkan data tersebut dan juga mengenai interaksi antara tersimpannya data beserta proses apa yang dikenakan data tersebut.

3.9 Entity Relationship Diagram (ERD)

Entity Relationship Diagram (ERD) adalah gambaran pada sistem dimana didalamnya terdapat hubungan antara entity beserta relasinya. Entity merupakan sesuatu yang ada dan terdefinisikan di dalam suatu organisasi, dapat abstrak dan nyata. Untuk setiap entity biasanya mempunyai atribute yang merupakan ciri entity tersebut. Menurut Marlinda (2004: 28) Atribute adalah kolom di sebuah relasi. Macam-macam atribute yaitu:

a. Simple Atribute

Atribute ini merupakan atribute yang unik dan tidak dimiliki oleh atribute lainnya.

b. Composite Atribute

Composite atribute adalah atribute yang memiliki dua nilai harga.

c. Single Value Atribute

Atribute yang hanya memiliki satu nilai harga.

d. Multi Value Atribute

Multi value atribute adalah atribute yang banyak memiliki nilai harga.

e. Null Vallue Atribute

Nullvalue atribute adalah atribute yang tidak memiliki nilai harga.

Sedangkan relasi adalah hubungan antar *entity* yang berfungsi sebagai hubungan yang mewujudkan pemetaan antar *entity*. Macam-macam relasi itu sendiri antara lain:

1. *One to One* (1:1)

Relasi dari *entity* satu dengan *entity* dua adalah satu berbanding satu. Untuk lebih jelasnya dapat dilihat Gambar 3.2

Gambar 3.2 Relasi One to One

2. *One to Many* (1:m)

Relasi antara *entity* yang pertama dengan *entity* yang kedua adalah satu berbanding banyak atau dapat pula dibalik, banyak berbanding satu. Untuk lebih jelasnya dapat dilihat Gambar 3.3

Gambar 3.3 Relasi One to many

3. Many to Many (m:m)

Relasi antara *entity* yang satu dengan *entity* yang kedua adalah banyak berbanding banyak. Untuk lebih jelasnya dapat dilihat Gambar 3.4

Gambar 3.4 Relasi Many to Many

3.10 PhpMyAdmin

Menurut Arief (2011:429) "phpMyAdmin adalah salah satu aplikasi GUI (Graphical User Interface) yang digunakan untuk mengelola database MySQL".

Menurut Kurniawan (2008:8) "*PhpMyAdmin* adalah halaman yang terdapat pada*web server*". Fungsi dari halaman ini adalah sebagai pengendali database *MySQL* menggunakan *web server*.

3.11 **Xamp**

Menurut Wicaksono (2008:7) menjelaskan bahwa XAMPP adalah sebuah software yang berfungsi untuk menjalankan website berbasis PHP dan menggunakan pengolah data MYSQL di komputer lokal. XAMPP berperan sebagai serverweb pada komputer lokal. XAMPP juga dapat disebut sebuah Cpanel server virtual, yang dapat membantu melakukan preview sehingga dapat dimodifikasi website tanpa harus online atau terakses dengan internet.

