RANCANG BANGUN APLIKASI SIMULASI

PELAYANAN PELANGGAN DENGAN MENGGUNAKAN METODE

DISCRETE-EVENT PADA PT. PLN (PERSERO) CABANG SURABAYA

TUGAS AKHIR

Nama : I Made Dimas Fajar Warmadewa

NIM : 04.41010.0252

Program : S1 (Strata Satu)

Jurusan : Sistem Informasi

SEKOLAH TINGGI

MANAJEMEN INFORMATIKA & TEKNIK KOMPUTER

SURABAYA

2011

RANCANG BANGUN APLIKASI SIMULASI PELAYANAN PELANGGAN DENGAN MENGGUNAKAN METODE DISCRETE-EVENT PADA PT. PLN (PERSERO) CABANG SURABAYA

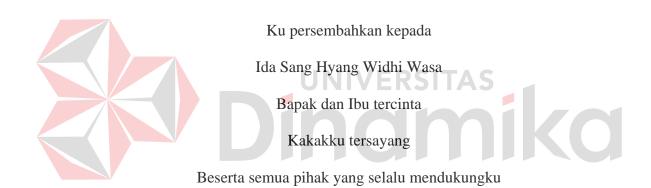
TUGAS AKHIR

Diajukan sebagai salah satu syarat untuk menyelesaikan Program Sarjana Komputer

Program: S1 (Strata Satu)

Jurusan : Sistem Informasi

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & TEKNIK KOMPUTER SURABAYA


2011

"Enjoy your life today...

Because yesterday has gone

UNIVERSITAS

and tomorrow may never come..."

Tugas Akhir

RANCANG BANGUN APLIKASI SIMULASI PELAYANAN PELANGGAN DENGAN MENGGUNAKAN METODE DISCRETE-EVENT PADA PT. PLN (PERSERO) CABANG SURABAYA

dipersiapkan dan disusun oleh

I Made Dimas Fajar Warmadewa NIM: 04.41010.0252

Telah diperiksa, diuji dan disetujui oleh Dewan Penguji pada: April 2011

Susunan Dewan Penguji

Pembimbing
Ir. I Gede Arya Utama, M.MT IVER SITAS

Penguji
I. A.B. Tjandrarini, S.Si, M.Kom

II. Sulistiowati, S.Si, M.M

Tugas Akhir ini telah diterima sebagai salah satu persyaratan untuk memperoleh gelar Sarjana

Pantjawati Sudarmaningtyas, S.Kom, OCA Pembantu Ketua I Bidang Akademik

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & TEKNIK KOMPUTER SURABAYA

PERNYATAAN

Dengan ini saya menyatakan dengan benar, bahwa Tugas Akhir ini adalah asli karya saya, bukan plagiat baik sebagian maupun apalagi keseluruhan. Karya atau pendapat orang lain yang ada dalam Tugas Akhir ini adalah semata hanya rujukan yang dicantumkan dalam Daftar Pustaka saya. Apabila dikemudian hari ditemukan adanya tindakan plagiat pada karya Tugas Akhir ini, maka saya bersedia untuk dilakukan pencabutan terhadap gelar kesarjanaan yang telah diberikan kepada saya.

ABSTRAK

PT. PLN (PERSERO) merupakan salah satu dari Badan Usaha Milik Negara (BUMN) di Indonesia. Sebagai perusahaan yang mengurus segala aspek kelistrikan di Indonesia, PT. PLN (PERSERO) merupakan tempat dimana masyarakat diberikan pelayanan berupa jasa di bidang tenaga listrik.

Masalah yang sering ditemui pada perusahaan ini yaitu masalah antrian. Jumlah loket pembayaran memiliki peran yang penting di dalam operasional kerja pada PT. PLN (PERSERO), apabila loket yang dipasang terlalu sedikit maka akan menimbulkan jumlah antrian yang panjang dan lama. Sedangkan apabila jumlah loket yang dipasang terlalu banyak, maka akan menyebabkan banyaknya waktu menganggur dari loket. Karena tidak adanya sistem simulasi pelayanan pelanggan, pengaktifan loket selama ini masih bersifat intuitif.

PT. PLN (PERSERO) membutuhkan aplikasi yang mampu menangani masalah antrian dengan baik agar dapat mencapai pemanfaatan tenaga kerja yang efisien dan optimal. Sistem simulasi pelayanan pelanggan ini menggunakan metode *Discrete-Event Simulation*. Dalam aplikasi ini perusahaan akan diminta untuk menentukan jumlah pelanggan, waktu antar kedatangan pelanggan, dan waktu proses pelayanan pelanggan.

Dengan adanya sistem yang dibangun ini, PT. PLN (PERSERO) dapat menentukan jumlah loket yang harus diaktifkan. Berdasarkan utilitas yang dihasilkan, dapat dinyatakan bahwa pemanfaatan tenaga kerja sudah efisien dan optimal.

Kata kunci: PLN, Simulasi Pelayanan Pelanggan, Discrete-Event Simulation.

KATA PENGANTAR

Puji syukur Penulis panjatkan kehadirat Tuhan Yang Maha Esa, atas berkat rahmat dan lindungan-Nya Penulis dapat menyelesaikan penyusunan Tugas Akhir yang merupakan persyaratan dalam menyelesaikan program Sarjana Komputer di Sekolah Tinggi Manajemen Informatika & Teknik Komputer (STIKOM) Surabaya. Tugas Akhir ini membahas tentang Rancang Bangun Sistem Informasi Program Simulasi Pelayanan Pelanggan Dengan Menggunakan Metode Discrete-Event Pada PT. PLN (PERSERO) Cabang Surabaya.

Pada kesempatan ini, Penulis menyampaikan rasa penghargaan dan terima kasih kepada:

- 1. Orang tua Penulis yang telah memberikan bimbingan dan semangat kepada Penulis didalam pelaksanaan dan pembuatan Tugas Akhir ini.
- 2. Bapak/Ibu guru SD, SMP, dan SMU yang telah menghantarkan Penulis ke jenjang pendidikan yang lebih tinggi pada saat ini.
- 3. Bapak Ir. I Gede Arya Utama, M.MT, selaku Dosen Pembimbing yang telah dengan penuh kesabaran dan perhatian dalam memberikan bimbingan serta petunjuk-petunjuk yang sangat Penulis butuhkan dalam pelaksanaan dan pembuatan Tugas Akhir ini.
- 4. Bapak Prof. Dr. Budi Jatmiko, M.Pd, selaku Ketua STIKOM Surabaya.
- Bapak Erwin Sutomo, S.Kom, selaku Kaprodi S1 Sistem Informasi STIKOM Surabaya.
- Teman-teman mahasiswa angkatan 2004 beserta angkatan lainnya, THP
 Team, teman-teman kost yang sering memberikan dukungan, dan semua pihak

yang mungkin belum tersebut di atas yang telah memberikan bantuan serta inspirasi bagi Penulis dalam menyelesaikan Tugas Akhir ini.

Penulis menyadari bahwa Tugas Akhir ini jauh dari sempurna. Untuk itu, Penulis mohon maaf atas kesalahan serta kekurangan yang terdapat dalam laporan ini. Penulis mengharapkan kritik dan saran dari semua pihak, agar dapat dipergunakan untuk perbaikan dan penyempurnaan Tugas Akhir ini. Akhir kata, Penulis berharap semoga Tugas Akhir ini dapat bermafaat bagi semua pihak yang memerlukannya.

Surabaya, Maret 2011

DAFTAR ISI

На	llaman
ABSTRAK	vi
KATA PENGANTAR	vii
DAFTAR ISI	X
DAFTAR TABEL	xiii
DAFTAR GAMBAR	XV
BAB I PENDAHULUAN	1
1.1 Latar Belakang Masalah	1
1.2 Perumusan Masalah	3
1.3 Pembatasan Masalah	3
1.4 Tujuan UNIVERSITAS	4
1.5 Manfaat	4
1.6 Sistematika Penulisan	5
BAB II LANDASAN TEORI	7
2.1 Sistem	7
2.2 Model Simulasi	9
2.3 Metode Discrete-Event Simulation	11
2.3.1 Next-Event Time Advance	12
2.3.2 Komponen dan Organisasi Model Next-Event Time Advance	13
2.4 Pengujian Data	16
2.4.1 Pengujian Kolmogorov-Smirnov Normal	17
2.4.2 Pengujian Kolmogorov-Smirnov Eksponensial	19

	2.5	Bilangan Acak Uniform	20
	2.6	Distribusi Probabilitas	21
		2.6.1 Distribusi Frekuensi	21
		2.6.2 Distribusi Normal	22
		2.6.3 Distribusi Eksponensial	24
		2.6.4 Distribusi Empiris	27
	2.7	Random Seed (Bibit Bilangan Acak)	28
	2.8	Data Flow Diagram.	29
		2.8.1 Simbol DFD	29
		2.8.2 Bentuk DFD	30
		2.8.3 Pembuatan DFD	30
	2.9	Entity Relationship Diagram	32
	2.10	Uji Validitas Kuisioner Penelitian	33
BAB	III AN	VALISIS DAN PERANCANGAN SISTEM	35
	3.1	Analisis Sistem	35
	3.2	Perancangan Sistem	37
		3.2.1 System Flow	37
		3.2.2 Data Flow Diagram	39
		3.2.3 Entity Relationship Diagram	45
		3.2.4 Struktur Database	47
		3.2.5 Desain Input Output	50
		3.2.6 Pengolahan Data	57
	3.3	Rancangan Evaluasi Hasil	61

BAB IV IM	IPLEMENTASI DAN EVALUASI	64
4.1	Implementasi	64
	4.1.1 Kebutuhan Sistem	64
	4.1.2 Implementasi Simulasi	65
	4.1.2 Implementasi Program	75
4.2	Evaluasi dan Uji Coba	81
	4.2.1 Uji Coba Fitur Dasar Sistem	81
	4.2.2 Uji Coba Kemudahan Penggunaan Aplikasi	92
BAB V PE	NUTUP	94
5.1	Kesimpulan	94
5.2	Saran	95
DAFTAR F	PUSTAKAUNIVERSITAS	96
LAMPIRA		97

DAFTAR TABEL

	Hala	man
Tabel 2.1	Simbol Pokok DFD	29
Tabel 3.1	TB_Pelanggan	47
Tabel 3.2	TB_Frekuensi	47
Tabel 3.3	TB_Normal	48
Tabel 3.4	TB_Eksponensial	48
Tabel 3.5	TB_Empiris	48
Tabel 3.6	TB_Acak	49
Tabel 3.7	TB_Simulasi	49
Tabel 3.8	Data Waktu Antar Kedatangan Pelanggan pada Pukul 08.00-14.00 WIB	57
Tabel 3.9	Distribusi Frekuensi Data Waktu Antar Kedatangan Pelanggan	58
Tabel 3.10	Proses Hitung Distribusi Normal Data Waktu Antar Kedatangan Pelanggan	59
Tabel 3.11	Proses Hitung Distribusi Eksponensial Data Waktu Antar Kedatangan Pelanggan	60
Tabel 3.12	Proses Hitung Distribusi Empiris Data Waktu Antar Kedatangan Pelanggan	61
Tabel 3.13	Rancangan Evaluasi Hasil	61
Tabel 4.1	Hasil Pembangkitan Bilangan random Berdistribusi Empiris	66
Tabel 4.2	Proses Simulasi 4 Loket	67
Tabel 4.3	Tabel Proses Simulasi 2 Loket	72
Tabel 4.4	Evaluasi Hasil Uji Coba Fitur Login	81
Tabel 4.5	Evaluasi Hasil Uji Coba Fitur Master Operator	82
Tabel 4.6	Evaluasi Hasil Uji Coba Fitur Nomor Antrian	83

Tabel 4.7	Evaluasi Hasil Uji Coba Fitur Monitoring Data Antrian	84
Tabel 4.8	Evaluasi Hasil Uji Coba Fitur Distribusi Frekuensi	85
Tabel 4.9	Evaluasi Hasil Uji Coba Fitur Distribusi Normal	87
Tabel 4.10	Evaluasi Hasil Uji Coba Fitur Distribusi Eksponensial	88
Tabel 4.11	Evaluasi Hasil Uji Coba Fitur Distribusi Empiris	89
Tabel 4.12	Evaluasi Hasil Uji Coba Fitur Tombol Save Dan Load	90
Tabel 4.13	Evaluasi Hasil Uji Coba Fitur Perhitungan Simulasi	91
Tabel 4.14	Hasil Pengisian Angket	92

DAFTAR GAMBAR

	Halar	man
Gambar 2.1	Jenis Penelitian dari Sistem yang Menggunakan Model	9
Gambar 2.2	Ilustrasi Model Next-Event Time Simulation	13
Gambar 2.3	Alur Kontrol Menggunakan Pendekatan Next-Event Time Advance	16
Gambar 2.4	Flowchart Perhitungan Bilangan Random Distribusi Normal	24
Gambar 2.5	Flowchart Bangkit Bilangan Random Distribusi Eksponensial	27
Gambar 2.6	Flowchart Bangkit Bilangan Random Distribusi Empiris	28
Gambar 3.1	Document Flow Simulasi Pelayanan Pelanggan	36
Gambar 3.2	System Flow Simulasi Pelayanan Pelanggan	38
Gambar 3.3	Flowchart Next-Event Time Advance	39
Gambar 3.4	Context Diagram Sistem Informasi Program Simulasi Pelayanan Pelanggan	40
Gambar 3.5	DFD Level 0 Sistem Informasi Program Simulasi Pelayanan Pelanggan.	41
Gambar 3.6	DFD Level 1 Uji Distribusi Data	42
Gambar 3.7	DFD Level 1 Proses Simulasi Data	43
Gambar 3.8	DFD Level 2 Uji Distribusi Sub Uji Distribusi Data	43
Gambar 3.9	DFD Level 2 Membangkitkan Bilangan Random Sub Proses Simulasi Data	44
Gambar 3.10	Conceptual Data Modelling	45
Gambar 3.11	Physical Data Modeling	46
Gambar 3.12	Desain Form Input Waktu Kedatangan dan Jumlah Pelanggan	50
Gambar 3.13	Desain Form Input Lama Waktu Pelayanan Pelanggan	51
Gambar 3.14	Desain Form Maintenance Data Operator	52

Gambar 3.15	Desain Form Distribusi Frekuensi	52
Gambar 3.16	Desain Form Distribusi Normal	53
Gambar 3.17	Desain Form Distribusi Eksponensial	54
Gambar 3.18	Desain Form Distribusi Empiris	55
Gambar 3.19	Desain Form Simulasi Antrian Pelayanan Pelanggan	56
Gambar 3.20	Desain Form Laporan Hasil Simulasi	56
Gambar 4.1	Form Login	75
Gambar 4.2	Form Utama	76
Gambar 4.3	Form Input Data Operator	76
Gambar 4.4	Form Ambil Antrian	77
Gambar 4.5	Form Monitoring Data	77
Gambar 4.6	Form Persiapan DataERS ITAS	78
Gambar 4.7	Form Distribusi Normal	78
Gambar 4.8	Form Distribusi Eksponensial	79
Gambar 4.9	Form Distribusi Empiris.	79
Gambar 4.10	Form Simulasi	80
Gambar 4.11	Form Laporan Hasil Simulasi	80
Gambar 4.12	Peringatan Username Dan Password Salah	81
Gambar 4.13	Data Operator Berhasil Ditambahkan	82
Gambar 4.14	Data Operator Berhasil Diupdate	82
Gambar 4.15	Antrian Nomor 1	83
Gambar 4.16	Antrian Nomor 2	83
Gambar 4.17	Montoring Data Antrian	84
Gambar 4.18	Pesan Error Data Belum Dipersiapkan	85

Gambar 4.19 Data Pelanggan	86
Gambar 4.20 Data Distribusi Frekuensi	86
Gambar 4.21 Pesan Error Belum Melakukan Proses Distribusi Frekuensi	86
Gambar 4.22 Tabel Distribusi Normal	87
Gambar 4.23 Tabel Bilangan Acak Distribusi Normal	87
Gambar 4.24 Tabel Distribusi Eksponensial	88
Gambar 4.25 Tabel Bilangan Acak Distribusi Eksponensial	88
Gambar 4.26 Tabel Distribusi Empiris	89
Gambar 4.27 Tabel Bilangan Acak Distribusi Empiris	89
Gambar 4.28 Pesan Data Bilangan Acak Berhasil Tersimpan	90
Gambar 4.29 Pesan Data Bilangan Acak Berhasil Ditampilkan	90
Gambar 4.30 Data Awal Simulasi	91
	91
Punamka	

BAB I

PENDAHULUAN

1.1 Latar Belakang Masalah

Kebudayaan mengantri di negara ini sering dapat ditemui di berbagai tempat yang memberikan pelayanan kepada masyarakat seperti bank, supermarket, rumah sakit, apotek dan lainnya. Minimnya minat masyarakat untuk melakukan antrian sering menimbulkan keresahan terutama apabila antrian yang harus dilakuan sangat panjang dan lama, sehingga sering terjadi aksi menyalip antrian atau melalui bantuan calo yang dapat menimbulkan keresahan bagi pengantri lainnya.

Perusahaan yang memiliki kebudayaan antri salah satunya adalah PT. PLN (Perusahaan Listrik Negara), PT. PLN (PERSERO) adalah sebuah Badan Usaha Milik Negara (BUMN) yang mengurus segala aspek kelistrikan di Indonesia, perusahaan ini merupakan tempat dimana masyarakat diberikan pelayanan berupa jasa di bidang tenaga listrik. PT. PLN (PERSERO) cabang Surabaya terletak di Jalan Dukuh Kupang Barat XIV/6, Surabaya, dimana masyarakat di sekitar Surabaya Selatan dapat melakukan transaksi pembayaran rekening tagihan listrik pada kantor cabang tersebut.

Masyarakat yang menjadi pelanggan PLN tiap bulannya diwajibkan untuk membayar rekening tagihan listrik dan pembayaran biasanya dilakukan pada kantor cabang PLN terdekat. Untuk melakukan pembayaran tagihan listrik, kadang kala pelanggan diharuskan untuk melakukan antrian apabila pada kantor cabang tersebut terdapat banyak pelanggan lain yang akan melakukan pembayaran

tagihan listrik. Jumlah loket pembayaran juga memiliki peran yang sangat penting di dalam operasional kerja dari PT. PLN (PERSERO), karena apabila loket yang dipasang terlalu sedikit maka aktifitas kerja dari pegawai masing-masing loket tersebut akan semakin keras dan pastinya akan menimbulkan banyaknya jumlah antrian pelanggan. sedangkan apabila jumlah loket yang dipasang terlalu banyak, maka akan menyebabkan pemakaian tenaga kerja yang tidak efisien karena banyaknya waktu menganggur dari loket.

Seperti halnya pada perusahaan dan tempat-tempat lain, mengantri merupakan kejadian yang umum terjadi. Oleh sebab itu diperlukan suatu sistem pelayanan pelanggan yang dapat memudahkan petugas dalam melayani pelanggan yang mengantri sehingga terjadi keteraturan dan kelancaran dalam antrian serta meningkatkan efektifitas kinerja dan efisiensi waktu pelayanan sesuai yang diharapkan.

Di dalam era globalisasi saat ini, teknologi mempunyai peranan penting dalam kehidupan manusia. Perkembangan teknologi terutama di bidang komputerisasi telah memberikan kemudahan bagi manusia dalam menyelesaikan pekerjaannya sehingga dapat lebih efektif dan efisien. Salah satu perkembangan teknologi dalam bidang komputerisasi adalah dengan adanya model simulasi. Simulasi memungkinkan untuk dapat mengamati bagaimana sistem yang dipresentasikan dalam model ini berperilaku. Simulasi merupakan alat khusus untuk merpresentasikan kejadian nyata yang mengandung resiko tinggi dan resiko financial yang besar. Maka untuk mengatasi masalah di atas, dipergunakan model simulasi dengan metode *Discrete-Event Simulation* dengan melakukan pendekatan *Next-Event Time Advanced*, yaitu salah satu model simulasi yang dipergunakan

untuk menganalisis data waktu antar kedatangan yang tidak pasti dalam mengatasi lonjakan antrian sewaktu-waktu agar mendapatkan hasil keputusan berapa jumlah loket yang harus diaktifkan pada waktu tertentu, dan dapat mengoptimalkan kinerja dari Sumber Daya Manusia (SDM) pada PT. PLN (PERSERO) cabang Surabaya.

1.2 Perumusan Masalah

Berdasarkan uraian latar belakang masalah dapat dirumuskan permasalahan dalam Tugas Akhir ini, antara lain:

- Bagaimana memecahkan masalah dengan simulasi pelayanan pelanggan pada
 PT. PLN (PERSERO) cabang Surabaya.
- 2. Bagaimana metode *Discrete-Event Simulation* dapat membantu proses simulasi pada aplikasi simulasi pelayanan pelanggan pada PT. PLN (PERSERO) cabang Surabaya.

1.3 Pembatasan Masalah

Sesuai dengan perumusan masalah yang diuraikan diatas, diperlukan beberapa batasan agar pembuatan program simulasi antrian ini dapat dengan mudah diterapkan pada PT. PLN (PERSERO) Cabang Surabaya. Pada laporan Tugas Akhir ini penulis membatasi permasalahan yang terjadi sebagai berikut:

- Penelitian untuk pengembangan program simulasi ini pada PT. PLN (PERSERO) Cabang Surabaya.
- 2. Program ini ditekankan pada waktu antar kedatangan pelanggan dan waktu pelayanan yang diperlukan untuk melayani pelanggan.

- Perhitungan waktu antar kedatangan pelanggan dan waktu pelayanan pelanggan dengan menggunakan satuan detik.
- 4. Waktu pengamatan pada jam kerja yaitu antara pukul 08.00-14.00 WIB. (selama 6 jam = 21600 detik).
- Uji distribusi terhadap data waktu antar kedatangan pelanggan adalah dengan menggunakan Distribusi Normal dan Distribusi Eksponensial.
- 6. Penerapan uji distribusi jika keseluruhannya ditolak maka dapat menggunakan Distribusi Empiris sebagai solusi untuk pembangkit bilangan random.
- 7. Tidak membahas tentang transaksi dan jenis pelayanan pada penelitian ini.
- 8. Tidak ada pelanggan yang keluar atau meninggalkan antrian.

1.4 <mark>Tu</mark>juan

Berdasarkan rumusan masalah serta batasan-batasan masalah yang telah diuraikan diatas maka tujuan pembuatan program simulasi ini adalah:

- Merancang dan membangun program simulasi pelayanan pelanggan pada PT.
 PLN (PERSERO) Cabang Surabaya.
- 2. Menerapkan Model *Discrete-Event Simulation* di dalam aplikasi simulasi pelayanan pelanggan pada PT. PLN (PERSERO) Cabang Surabaya.

1.5 Manfaat

Manfaat dari perancangan dan pembangunan Program Simulasi Pelayanan Pelanggan pada PT. PLN (PERSERO) Cabang Surabaya ini adalah, agar PT. PLN (PERSERO) dapat mengoptimalkan kinerja pelayanan pelanggan pada loket terhadap perusahaan.

1.6 Sistematika Penulisan

Sistematika penulisan yang digunakan dalam penyusunan laporan ini dibedakan dengan pembagian bab sebagai berikut:

BAB I : PENDAHULUAN

Bab ini menjelaskan tentang latar belakang, perumusan masalah, pembatasan masalah, dan tujuan dari TA.

BAB II : LANDASAN TEORI

Bab ini menjelaskan tentang pengertian sistem, model simulasi, metode *Discrete-Event Simulation*, pengujian data, bilangan acak uniform, distribusi probabilitas, *random seed* (bibit bilangan acak), *Data Flow Diagram*, dan *Entity Relationship Diagram*.

BAB III: ANALISIS DAN PERANCANGAN SISTEM

Bab ini menjelaskan tentang analisis sistem, perancangan sistem, pembuatan document flow, system flow, flowchart data flow diagram, desain ERD baik conceptual data model maupun physical data model, struktur basis data, desain input/output, pengolahan data mentah, serta rancangan evaluasi hasil.

BAB IV : EVALUASI DAN IMPLEMENTASI

Bab ini menjelaskan tentang implementasi dari aplikasi yang dibuat secara keseluruhan, serta melakukan evaluasi dan uji coba terhadap aplikasi yang dibuat untuk mengetahui apakah aplikasi tersebut telah dapat menyelesaikan permasalahan yang dihadapai sesuai dengan yang diharapkan.

BAB V: **PENUTUP**

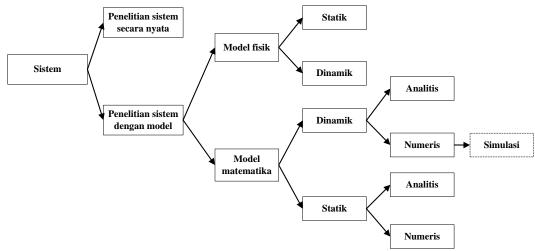
Bab ini berisi kesimpulan dan saran. Saran yang dimaksud adalah saran terhadap kekurangan dari aplikasi yang ada kepada pihak lain yang ingin meneruskan topik TA ini. Tujuannya adalah agar pihak lain tersebut dapat menyempurnakan aplikasi sehingga bisa menjadi lebih baik dan berguna.

BAB II

LANDASAN TEORI

Dalam merancang dan membangun sebuah aplikasi, sangatlah penting untuk mengetahui terlebih dahulu dasar-dasar yang akan digunakan nantinya. Dasar-dasar teori tersebut akan digunakan sebagai landasan berpikir dalam melakukan lebih lanjut sehingga nantinya akan terbentuk suatu aplikasi sesuai dengan tujuan. Adapun landasan teori yang dipergunakan untuk membuat program simulasi pelayanan pelanggan dengan menggunakan metode *Discrete-Event Simulation* antara lain:

2.1 Sistem


Untuk mempelajari sebuah sistem terkadang dimungkinkan untuk melakuan uji coba dengan sistem tersebut. Namun, tidak mungkin untuk melakuan suatu uji coba apabila sistem tersebut masih hipotesa. Alternatif yang terkadang dipakai adalah membuat sejumlah prototype dan mengujinya. Tetapi cara ini membutuhkan biaya yang tidak sedikit dan menghabiskan banyak waktu, serta tidak praktis. Cara yang lain adalah dengan memodelkan sistem, dalam pemodelan suatu sistem, proses penyeleksian dilakukan sedemikian rupa sehingga ada beberapa elemen sistem yang dimodelkan dan ada elemen sistem yang diasumsikan tidak penting dan tidak relevan dalam konteks tujuan yang ingin dicapai. Jadi, sebuah model tidak hanya merupakan perwujudan tujuan, namun juga merupakan asumsi.

Setiawan (1991) mengemukakan bahwa, model-model yang digunakan dalam studi sistem dapat diklarifikasikan dalam banyak cara. Secara garis besar klarifikasi tersebut dibedakan menjadi:

- Model fisik, didasarkan pada analogi antara sistem-sistem, dalam model fisik atribut sistem digambarkan oleh pengukuran-pengukuran seperti pengukuran tegangan.
- Model matematika, penggunaan symbol-simbol dan persamaan-persamaan matematika untuk menggambarkan sistem. Atribut sistem dipresentasikan oleh variable-variabel yang ada.

Selanjutnya, model matematika dibedakan lagi menjadi model statik dan model dinamik. Model statik hanya dapat menunjukkan nilai-nilai yang dimiliki oleh atribut ketika sistem berada dala keseimbangan. Sebaliknya, model dinamik mengikuti perubahan yang dihasilkan oleh aktivitas sistem sepanjang waktu.

Pembedaan berikutnya dalam model matematika adalah pembedaan dalam metode analitis dan numeris. Menggunakan metode analitis berarti memakai numeris matematika deduktif untuk menyelesaikan model. Sementara itu, metode numeris melibatkan penggunaan prosedur-prosedur komputasi untuk menyelesaikan persamaan-persamaan yang ada. Dari model numeris ini dapat dibuat teknik khusus yang disebut simulasi, Gambar 2.1. menunjukan jenis-jenis model.

Gambar 2.1 Jenis Penelitian dari Sistem yang Menggunakan Model (Sumber: Utama, 2010)

2.2 Model Simulasi

Simulasi adalah suatu model yang digunakan dalam membuat keputusan dengan mengevaluasi perilaku model pada kondisi yang berlainan. Simulasi adalah perangkat uji coba yang menghasilkan solusi-solusi yang hampir optimal. Simulasi sendiri dapat memungkinkan dalam membuat kesimpulan dari solusi-solusi atas percobaan yang ada dan memberikan keputusan-keputusan terhadap percobaan sebagai alternatif dalam melakukan pendekatan.

Definisi simulasi menurut Setiawan (1991) bahwa "simulasi merupakan proses perancangan model dari suatu sistem nyata dan pelaksanaan eksperimeneksperimen dengan model ini untuk tujuan memahami tingkah laku sistem atau untuk menyusun strategi (dalam suatu batas atau limit yang ditentukan oleh suatu atau beberapa kriteria) sehubungan dengan sistem operasi tersebut".

Gould (1993) mengemukakan, bahwa dasar pemikiran dari simulasi adalah pembuatan dan percobaan suatu perangkat, *orsimulator* yang akan disimulasikan oleh inti daru sistem pada aspek kepentingan tertentu dalam kecepatan, serta sisi keefektifan biaya. Model simulasi merupakan suatu perangkat

uji coba yang menrapkan beberapa aspek penting termasuk data masa lalu dalam memberikan alternatif tindakan yang dapat mendukung pengambilan keputusan.

Simulasi juga dikatakan sebagai proses perancangan model dari suatu sistem nyata dan pelaksanaannya menggunakan eksperimen-eksperimen dengan modul-modul yang bertujuan memahami tingkah laku atau untuk menyusun strategi sehubungan dengan beroperasinya sistem tersebut.

Keandalan simulasi mampu menghadapi kompleksitas permasalahan mengukur kinerja suatu data yang bervariasi dan mampu memberikan solusi alternatif secara tepat dengan bantuan komputer. Oleh karena itu model simulasi adalah jawaban atas ketidakmampuan model analitis. Berikut ini adalah karakteristik model matematika dan model analitis:

- 1. Model matematika yang digunakan pada model analitis biasanya tidak mampu menyajikan sistem nyata yang biasanya lebih komplek, kalaupun hal ini terjadi biasanya tidak mungkin diselesaikan dengan hanya menggunakan teknik analitis yang sudah ada.
- Model analitis tidak mungkin digunakan untuk hal-hal yang tidak pasti dan mempunyai aspek yang dinamis (fungsi waktu). Model analitis tidak mampu menyajikan karakteristik dari sistem, tapi hanya memberikan jawaban tunggal yaitu nilai optimum saja.

Model simulasi dapat digunakan untuk menyelesaikan permasalahan yang komplek tersebut memiliki 5 langkah pokok yang diperlukan, langkah-langkah tersebut adalah:

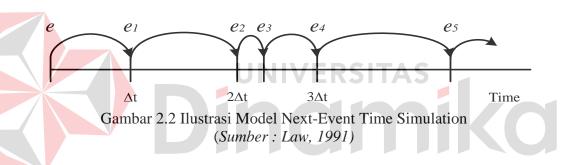
- 1. Menentukan sistem atau permasalahan yang akan disimulasikan.
- Menentukan tujuan simulasi (apa yang harus dipecahkan, dijawab, dan disimpulkan atas permasalahan yang ada) dan hal-hal lain yang mendukung terwujudnya model simulasi.
- 3. Mengembangkan model simulasi dan uji terhadap kebenaran proses perhitungan yang ada didalamnya.
- 4. Mengembangkan model simulasi dengan menentukan lamanya simulasi (dilakukan beberapa kali) dan uji.
- 5. Analisis hasil dari simulasi.

2.3 Metode Discrete-Event Simulation

Banks dan Carson (1984) mengemukakan bahwa *Discrete-Event Simulation* adalah simulasi yang membahas model suatu sistem yang selalu berkembang karena adanya suatu representasi dari perubahan variable-variabel pada kondisi tertentu dan di saat tertentu juga. Kondisi tertentu ini merupakan kejadian dimana suatu peristiwa terjadi dan *event* (kejadian) didefinisikan sebagai kejadian atau peristiwa pada saat yang sama dapat mengubah kondisi suatu sistem. Dijelaskan juga bahwa *discrete-event* secara konsep dapat dikerjakan dengan menggunakan perhitungan-perhitungan tangan biasa, tetapi dengan banyaknya data yang akan diproses dan membutuhkan media penyimpanan atas proses-proses tersebut, maka dalam menyelesaikan permasalahan menggunakan *Discrete-Event Simulation* disarankan menggunakan media komputer.

Dalam beberapa *Discrete-Event Simulation, event-event* yang ada dalam model ini dipergunakan untuk tujuan-tujuan pokok dalam penelitian perilaku sistem, dan tidak untuk melakukan perubahan-perubahan terhadap sistem.

Misalnya suatu *event* bisa saja digunakan untuk membuat daftar dari akhir pengoperasian sebuah simulasi pada kondisi atau waktu tertentu, atau mungkin saja *event* tadi digunakan untuk mebuat daftar keputusan yang berkaitan dengan pengoperasian sebuah sistem yang mungkin saja tidak menghasilkan perubahan pada kondisi atau waktu tertentu tersebut.


Berdasarkan mekanisme waktu simulasi (*Time Advance Mecanism*), maka *Discrete-Event Simulation* dibedakan menjadi dua, yaitu *Fixed-Increment Time Advance* dan *Next-Event Time Advance*. Namun terdapat dua kelemahan dengan menggunakan pendekatan *Fixed-Increment Time Advance*, yaitu kesalahan-kesalahan yang tetap dimasukkan oleh kejadian-kejadian itu muncul, serta perlunya menentukan kejadian mana yang diproses lebih dahulu ketika kejadian-kejadian yang pada kenyataannya tidak serempak diperlukan begitu saja oleh model tersebut. Dengan adanya masalah tersebut maka pendekatan *Fixed-Increment Time Advance* pada umumnya tidak dipergunakan untuk *Discrete-Event Simulation Models* pada saat waktu kejadian-kejadian yang muncul secara berturut-turut mengalami perubahan.

2.3.1 Next-Event Time Advance

Law (1991) mengemukakan bahwa dengan menggunakan pendekatan Next-Event Time Advance, waktu simulasi ini diinisialisasikan dengan 0 (nol) dan waktu kejadian pada event selanjutnya dideklarasikan yaitu pada saat server melayani sejumlah permintaan dan pesanan. Waktu simulasi kemudian mendekat pada waktu kejadian berikutnya (diutamakan) event selanjutnya, yang menunjuk keadaan sistem yang diperbaharui untuk menjelaskan fakta bahwa suatu kejadian telah berlangsung secara kontinu. Waktu simulasi menuju pada waktu berikutnya

(kejadian baru), batasan dari sistem diperbaharui, dan waktu kejadian selanjutnya dideklarasikan. Proses pendekatan dari wkatu simulasi pada satu kejadian ke kejadian yang lain dilanjutkan sampai akhir. Kondisi pelayanan terhadap konsumen tersebut dianggap terlayani dalam keadaan aman. Dengan melihat batas-batas waktu pelayanan yang selalu berubah kejadiannya, maka peristiwa ini termasuk dalam model *Discrete-Event Simulation*, karena dalam periode aktivitas sistem selalu diputar dengan melompati waktu dari satu waktu kejadian tiap periode ke waktu kejadian yang lainnya.

Pendekatan menggunakan Next-Event Time Advance dapat dilihat pada Gambar 2.2.

2.3.2 Komponen dan Organisasi Model Next-Event Time Advance

Walaupun simulasi telah digunakan pada berbagai sistem yang sesungguhnya, namun hampir semua model *Discrete-Event Simulation* memiliki sejumlah komponen-komponen yang sama serta menyediakan logika dari komponen-komponen tersebut, juga menawarkan *coding*, *debugging*, begitu juga perubahan-perubahan lebih lanjut pada program komputer yang berkaitan dengan model-model simulasi (Law, 1991). Lebih rinci tentang komponen-komponen tersebut yang pasti ada pada *Discrete-Event Simulation models* yang menggunakan *Fixed-Increment Time Advance approach*, adalah sebagai berikut:

1. System state (kondisi sistem).

Sekumpulan kondisi (variable) yang perlu untuk menjelaskan sistem pada waktu tertentu.

2. Simulation clock (jam simulasi).

Variabel yang memberikan nilai waktu simulasi yang sedang berlangsung.

3. Event-list (daftar kejadian).

Suatu daftar yang berisi waktu untuk berikutnya pada saat masing-masing jenis *event* (kejadian) yang akan terjadi.

4. Statistical counter (counter statistic).

Variabel-variabel yang digunakan untuk melakukan proses statistic dan menyimpannya sebagai informasi statistic mengenai kemampuan dari sistem.

5. *Initialization routine* (rutin awal).

Sub rutin yang dipergunakan untuk mengawali model simulasi saat "0".

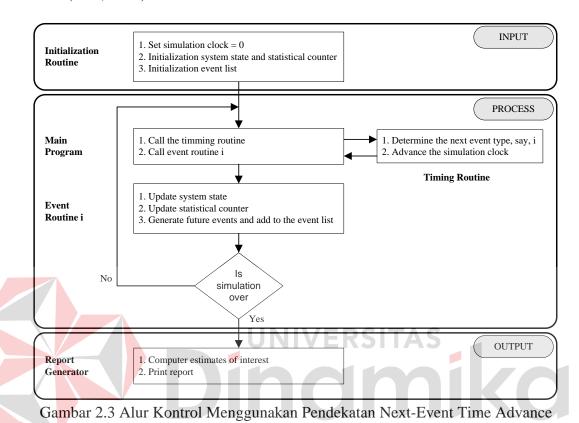
6. Timing routine.

Sub rutin yang menetapkan kejadian berikutnya dari *event* list (daftar kejadian) dan kemudian mempercepat jam simulasi sampai waktu pada saat *event* tersebut harus terjadi.

7. Event routine.

Sub rutin yang dipergunakan untuk meng-update (memperbarui) kondisi sistem pada saat suatu jenis *event* khusus terjadi (ada suatu kejadian untuk masing-masing jenis kejadian).

8. Report generator.


Sub rutin yang digunakan untuk meperhitungkan estimasi-estimasi (dari counter statistical) pada pengukuran-pengukuran kemampuan yang diinginkan dan mencetak report pada saat akhir simulasi.

9. *Main program* (program utama).

Program yang digunakan untuk memanggil timing routine untuk menetapkan kejadian berikutnyadan kemudian memindahkan (mentransfer) control ke *event* routine yang telah ditentukan guna meng-update kondisi sistem yang tepat.

Hubungan-hubungan logika (alur kontrol) di antara komponen-komponen ini digambarkan pada Gambar 2.3. Gambar tersebut menunjukkan saat simulasi dimulai dengan zero ("0") yang kemudian dipanggil oleh program utama untuk pada awal rutin dan pada saat itu simulation clock (jam simulasi) dikondisikan pada zero, keadaan sistem dan statistical counter diawali dan counter list dimulai. Setelah kontrol dikembalikan pada program utama, maka kontrol memanggil timing routine untuk menentukan jenis event mana yang paling mendekati akan terjadi. Apabila suatu event jenis I adalah event yang akan terjadi, maka jam simulasi dipercepat sampai pada waktu dimana event jenis I akan terjadi dan kontrol dikembalikan pada program utama. Kemudian, main program memanggil event routine I, dimana terdapat 3 (tiga) jenis aktivitas terjadi: (1) updating kondisi sistem sampai kepada fakta bahwa event jenis I telah terjadi, (2) mengumpulkan informasi mengenai system performance dengan cara mengupdate statistical counter, dan (3) menghasilkan waktu-waktu event untuk kejadian-kejadian berikutnya dan menambahkan informasi ini pada event list.

Setelah semua proses dilalui, maka untuk menentukan (berhubungan dengan beberapa kondisi berhenti) apakah itu simulasi harus dibatalkan sekarang atau tidak (Law, 1991).

2.4 Pengujian Data

Pada beberapa eksperimen, dibutuhkan suatu proses pengambilan data secara langsung di lapangan atau diperlukan pembangkitan data pada proses eksperimen yang memerlukan simulasi. Pada proses ini tentunya diinginkan adanya kesamaan antara distribusi data yang diperoleh, dengan distribusi data yang tepat secara teori. Oleh karena itu diperlukan suatu proses pengujian kecocokan distribusi (Haryono, 1984).

(Sumber : Law, 1991)

Distribusi ada dua macam, distribusi data yang bersifat diskrit dan distribusi data yang bersifat kontinu. Tentunya kedua macam distribusi ini akan

berbeda proses pencocokan distribusinya. Untuk distribusi data yang bersifat diskrit akan tepat jika digunakan pengujian distribusi metode *Pearson's Test Goodness of Fit.* Sedangkan untuk distribusi data yang bersifat kontinu, akan tepat jika dipergunakan pengujian distribusi dengan metode *Kolmogorov-Smirnov*.

Karena data sample yang didapat oleh penulis merupakan data yang bersifat kontinu, maka untuk pengujian distribusi menggunakan metode Kolmogorov-Smirnov, yaitu pengujian Kolmogorov-Smirnov Eksponensial dan Kolmogorov-Smirnov Normal.

Dalam statistik, pengambilan data yang besar biasanya diwakili oleh sample (n) dipakai untuk menyimpulkan parameter dari populasi yang nyata. Dalam hal ini berarti dalam melakukan suatu pengamatan mengenai suatu hal dari sample dengan wilayah yang sempit untuk mendapatkan kesimpulan kejadian pada wilayah yang lebih luas. Pengamatan ini akan dilakukan dengan lebih baik dan meyakinkan bilamana sample diambil secara berulang-ulang dan random sehingga diperoleh banyak contoh data yang sifatnya random (berlainan) dari populasi yang sama.

2.4.1 Pengujian Kolmogorov-Smirnov Normal

Pengujian bertujuan melihat tingkat kesesuaian antara fungsi distribusi hasil pengamatan dengan fungsi distribusi teoritik tertentu, dengan menetapkan suatu titik yang menggambarkan perbedaan maksimum keduanya (Walpole dan Myers, 1995).

1. Statistik Uji

$$T = Maks |F(x) - S(x)|$$
.....(2.1)

Keterangan:

F(x): fungsi distribusi kumulatif dari suatu distribusi teoritik tertentu

S(x): funsi distribusi kumulatif dari distribusi pengamatan

2. Kriteria Penolakan

Jika nilai $T \geq W_{1-\alpha}$, maka H_0 ditolak (tabel yang digunakan adalah tabel Kolmogorov-Smirnov).

Langkah-langkah pengujian:

1. Menetapkan hipotesis awal dan hipotesis tandingan

Hipotesis: H₀: data mengikuti distribusi normal

H₁: data tidak mengikuti distribusi normal

2. Menghitung statistik uji

Banyaknya parameter pada distribusi normal adalah β yang menyatakan nilai rata-rata. Untuk menentukan harga F(x) maka nilai β harus ditentukan dengan menggunakan Persamaan (2.2).

3. Menetapkan α (taraf signifikansi)

$$\alpha = 0.05$$

4. Menentukan daerah penolakan

 $W_{I-\alpha}$ didapatkan dari tabel Kolmogorov-Smirnov sesuai dengan n yang ada dan simpangan baku yang didapatkan.

5. Membuat kesimpulan

Membandingkan antara T dengan $W_{1-\alpha}$, jika $T < W_{1-\alpha}$ maka H_0 gagal tolak (diterima) dan bila nilai $T \ge W_{1-\alpha}$, maka H_0 ditolak.

6. Membuat interprestasi dari kesimpulan

Jika H₀ gagal tolak.

2.4.2 Pengujian Kolmogorov-Smirnov Eksponensial

Pengujian bertujuan untuk melihat tingkat kesesuaian antara fungsi distribusi hasil pengamatan dengan fungsi distribusi teoritik tertentu, dengan menetapkan suatu titik yang menggambarkan perbedaan maksimum keduanya (Walpole dan Myers, 1995).

1. Statistik Uji

Menggunakan persamaan seperti Persamaan (2.1)

2. Kriteria Penolakan

Jika nilai $T \geq W_{1-\alpha}$, maka H_0 ditolak (tabel yang digunakan adalah tabel Kolmogorov-Smirnov).

Langkah-langkah pengujian:

1. Menetapkan hipotesis awal dan hipotesis tandingan

Hipotesis: H₀: data mengikuti distribusi eksponensial

H₁: data tidak mengikuti distribusi eksponensial

2. Menghitung statistik uji

Banyaknya parameter pada distribusi eksponensial adalah β yang menyatakan nilai rata-rata. Untuk menentukan harga F(x) maka nilai β harus ditentukan dengan cara:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i - fi}{n}$$
 (2.2)

Keterangan: $\bar{x} = \beta = \text{rata-rata}$

Ditentukan nilai probabilitas untuk masing-masing x dari eksponensial:

$$F(x) = 1 - e^{\frac{-x}{\beta}}$$
 (2.3)

S(x) diperoleh dari frekuensi kumulatif masing-masing nilai x_i dibagi dengan jumlah sample.

3. Menetapkan α (taraf signifikansi)

$$\alpha = 0.05$$

4. Menentukan daerah penolakan

 $W_{I-\alpha}$ didapatkan dari tabel Kolmogorov-Smirnov sesuai dengan n yang ada dan simpangan baku yang didapatkan.

5. Membuat kesimpulan

Membandingkan antara T dengan $W_{1\text{-}\alpha}$, jika $T < W_{1\text{-}\alpha}$ maka H_0 gagal tolak (diterima) dan bila nilai $T \geq W_{1\text{-}\alpha}$, maka H_0 ditolak.

6. Membuat interprestasi dari kesimpulan

Jika H₀ gagal tolak.

2.5 Bilangan Random Uniform

Walpole dan Myers (1995) mengungkapkan bahwa, sekali dan rutin adalah cara untuk membangkitkan bilangan random *uniform* yang mempunyai jarak antar bilangannya adalah (0,1). Untuk mendapatkan bilangan random *uniform* dapat menggunakan persamaan:

$$\left(\frac{X-a}{b-a}\right) = \left(\frac{U-0}{1-0}\right).$$
(2.4)

Keterangan: X =bilangan random antara minimal data dan maksimal data

a = minimal data

b = maksimal data

U =bilangan random uniform

2.6 Distribusi Probabilitas

Dalam ketidakpastian antrian pelanggan yang ada, menimbulkan banyaknya kemungkinan-kemungkinan yang terjadi. Salah satu cara untuk memperkecil beberapa kemungkinan tersebut adalah dengan mempelajari pola dari distribusi probabilitasnya. Distribusi probabilitas toritis yang sering digunakan dalam fungsi antrian adalah distribusi Normal dan distribusi Eksponensial (Walpole dan Myers, 1995).

2.6.1 Distribusi Frekuensi

Untuk dapat memahami data dengan mudah, maka baik data Kualitatif maupun data Kuantitatif harus disajikan dalam bentuk yang ringkas dan jelas. Salah satu caranya adalah dengan distribusi frekuensi, yaitu pengelompokan data ke dalam beberapa kelompok atau class dan kemudian dihitung banyaknya data yang masuk ke dalam tiap class. Distribusi Frekuensi menunjukkan jumlah atau banyaknya item dalam setiap kategori atau class (Walpole dan Myers, 1995).

Dalam menentukan class yang digunakan pada distribusi frekuensi sebaiknya harus hati-hati. Ada tiga hal yang perlu diperhatikan dalam menentukan class bagi distribusi frekuensi untuk data kuantitatif, yaitu jumlah class, lebar class, dan batas class. Sturges (1926) mengemukakan suatu persamaan untuk menentukan banyaknya class sebagai berikut:

$$k = 1 + 3.3 \log n$$
(2.5)

Keterangan: k = banyaknya class data.

n = banyaknya sample data.

Persamaan tersebut diberi nama *Kriterium Sturges* dan merupakan suatu ancarancar tentang banyaknya class. Kemudian disarankan interval atau lebar class

adalah sama untuk setiap class, dan untuk menentukan besarnya class (panjang interval) digunakan persamaan:

$$c = \frac{X_{\text{max}} - X_{\text{min}}}{k}$$
 (2.6)

Keterangan: c = panjang masing-masing interval class

k =banyaknya class

 X_{max} = nilai observasi terbesar

 X_{min} = nilai observasi terkecil

2.6.2 Distribusi Normal

Distribusi normal memegang peranan yang sangat penting dalam statistic inferensial, yaitu sebagai model distribusi probabilitas (Walpole dan Myers, 1995). Ada tiga alasan yang melandasi pentingnya distribusi normal, yaitu:

- 1. Distribusi normal merupakan model yang baik untuk mendekati frekuensi dari fenomena alam dan sosial apabila sampelnya besar. Populasi berbagai perilaku dan karakteristik alam dan sosial yang berskala interval dan rasio umumnya diasumsikan berdistribusi normal.
- Ada hubungan yang kuat antara besarnya sampel dengan distribusi rata-rata yang diperoleh dari sampel-sampel random yang diambil dari suatu populasi yang sama. Semakin besar sampel, distribusi rata-rata sampel semakin mendekati normal.
- Distribusi normal mendekati penghampiran (aproksimasi) yang baik terhadap distribusi toritis lainnya yang pada umumnya lebih sulit digunakan untuk memodelkan distribusi peluang.

Distribusi Normal berbentuk simetri dengan densitas peluang berbentuk bell:

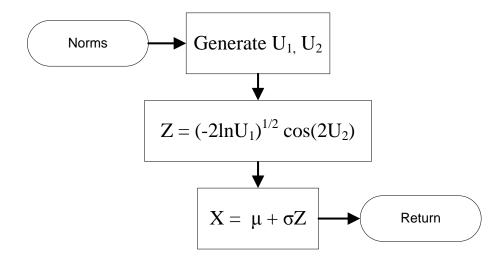
$$f(x) = (1/\sigma\sqrt{2\Pi})^{\{-1/2(x-\mu)/\sigma)^2\}}$$
(Sumber: Gottfried, 1984)

Dimana:

 μ = rata-rata populasi

 σ = simpangan baku populasi (*standard deviation*)

Selanjutnya bila dikehendaki membangkitkan bilangan random berdistribusi normal dengan rata-rata = μ dan standard deviasi = σ maka dengan mudah bisa dicari dengan persamaan berikut:


$$X = \mu + \sigma Z$$
(2.8)

Untuk membangkitkan bilangan random berdistribusi normal masih bisa dengan menggunakan cara lain yaitu dengan persamaan:

1.
$$Z = (-2\ln U_1)^{1/2} \sin(2\pi U_2)$$
(2.9)

2.
$$Z = (-2lnU_1)^{1/2} cos(2\pi U_2)$$
(2.10)

Kedua persamaan diatas ini memberikan hasil bilangan random yang berdistribusi standard normal. Sehingga untuk membangkitkan bilangan random berdistribusi normal dengan rata-rata μ dan standard deviasi σ , maka alur flowchart penyelesaian dengan persamaan tersebut adalah:

Gambar 2.4 Flowchart Perhitungan Bilangan Random Distribusi Normal (Sumber: Utama, 2010)

2.6.3 Distribusi Eksponensial

Dalam simulasi sering dibutuhkan suatu bilangan berdistribusi eksponensial seperti yang sering digunakan model antrian dalam kehidupan sehari-hari: pada bank, airport, pompa bensin dan sebagainya.

Bagaimana membangkitkan bilangan random yang berdistribusi exponensial. Untuk itu misal x = waktu. $\alpha \Delta x$ adalah peluang terjadinya kejadian random antara x dan $(x + \alpha \Delta x)$. α positif diketahui sehingga peluang tidak akan terjadinya kejadian dalam waktu ini adalah $(1 - \alpha \Delta x)$ Sekarang pertimbangan untuk interval batas waktu yang besar 0 - x, dimana interval ini dibagi menjadi n dengan interval Δx yang sama sehingga $x = n*\Delta x$ (Walpole dan Myers, 1995).

Sehingga peluang tidak terjadinya kejadian random pada batas waktu yang ditentukan bisa ditulis dengan:

$$\lim_{\Delta x \to 0} (1 - \alpha \Delta x) = \lim_{\Delta x \to 0} (1 - \alpha \Delta x)^{\frac{x}{\Delta x}}$$

$$= \lim_{\Delta x} \left[(1 - \alpha \Delta x)^{\frac{x}{\Delta x}} \right]^{-\alpha x}$$

$$= e^{-\alpha x} \qquad (2.11)$$
(Sumber: Gottfried, 1984)

Dimana e adalah bilangan napier (e = 2,1782818...)

Dari sini bisa didapat peluang terjadinya kejadian:

$$P(0 \le X \le x) = F(x) = 1 - e^{-\alpha x}$$
(2.12)

Dengan fungsi densitas peluang:

$$f(x) = \alpha e^{-\alpha x} \tag{2.13}$$

UNIVERSITAS (Sumber: Gottfried, 1984)

selebihnya akan dengan mudah didapatkan mean (μ) dari distribusi eksponensial ($\mu = 1/\alpha$).

Apabila menggunakan metoda inverse, terlebih dahulu selesaikan persamaan:

$$F(x) = 1 - e - \alpha x$$
(2.14)

Didapat

$$x = -(1/\alpha)\ln[1-F(x)]$$
(2.15)

(Sumber: Gottfried, 1984)

Karena F(x) berdistribusi uniform, maka harga atau nilai 1-F(x) juga berdistribusi uniform dan bisa ditulis dengan cara berikut:

$$X = -1(1/\alpha)\ln(U)$$
(2.16)

(Sumber: Gottfried, 1984)

Dimana X adalah bilangan random yang terdistribusi exponensial sedang U adalah bilangan terdistribusi uniform(0,1).

Bila dikehendaki dengan batas yang lain misalnya 0 < x₀ ≤x maka persamaannya akan menjadi:

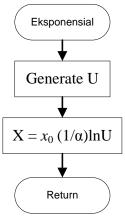
$$X = x_0 - (1/\alpha) \ln U$$
(2.17)

(Sumber: Gottfried, 1984)

Jadi, apabila terdapat hubungan antara α dan μ , maka persamaan yang didapat:

$$a = \frac{1}{(\mu - x_0)} \tag{2.18}$$

Untuk membangkitkan bilangan random berdistribusi eksponensial menggunakan persamaan:


$$X = x_0 - \left(\frac{1}{\alpha}\right) \ln U \tag{2.19}$$

$$\alpha = \frac{1}{\left(\mu - x_0\right)} \tag{2.20}$$

Keterangan : x_0 = minimal data

U =bilangan random uniform

Flowchart membangkitkan bilangan random distribusi eksponensial adalah sebagai berikut:

Gambar 2.5 Flowchart Bangkit Bilangan Random Distribusi Eksponensial. (Sumber: Utama, 2010)

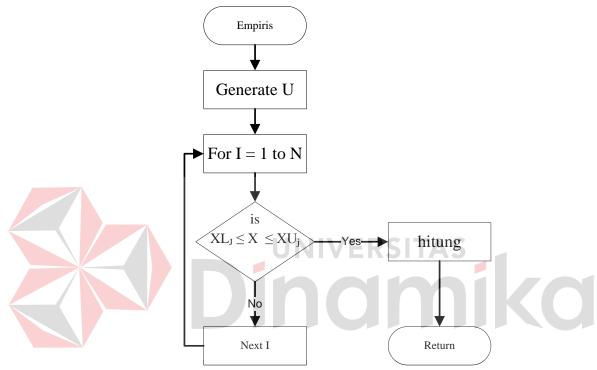
2.6.4 Distribusi Empiris

Walpole dan Myers (1995) mengungkapkan bahwa, di dalam masalahmasalah nyata peluang yang akan terjadi dinyatakan dalam empiris dari grup data sejumlah j (dimana j = 1,2,...,m); dengan batas batas bawah XLj dan batas atas XUj sebagai berikut:

$$XLj \le X \le XUj$$
(2.18)

Harga Yj merupakan peluang bahwa harga X untuk kejadian random tidak melebihi Xuj jadi X bisa dibuat dengan mudah dengan bantuan bilangan random distribusi uniform U(0,1) dengan interpolasi linier sebagai berikut:

$$X = XL_{j} + \left[\frac{U - Y_{j-1}}{Y_{1} - Y_{j-1}}\right] (XU_{j} - XL_{j})(2.15)$$


Bila metoda ini diterapkan pada komputer maka harga-harga a,b dan Yj diinputkan sedang batas-batas interval XLj & XUj bisa dihitung dengan persamaan:

$$XLj = a + ((b-a)/m)*(j-1)$$
(2.16)

$$XU_j = a + ((b-a)/m)*j$$
(2.17)

Distribusi ini dapat dilakukan prosesnya jika kedua uji distribusi (uji distribusi normal dan uji distribusi exponensial) yang dilakukan tidak memenuhi atau pada kondisi tolak $H_{\rm 0}$.

Untuk membangkitkan bilangan random berdistribusi Empiris adalah dengan algoritma dalam bentuk flowchart pada Gambar 2.7:

Gambar 2.6 Flowchart Bangkit Bilangan Random Distribusi Empiris. (Sumber: Utama, 2010)

2.7 Random Seed (Bibit Bilangan Random)

Model ini menggunakan hasil simulasi yang bisa diproduksi ulang dengan hasil yang sama menggunakan *random seed*. Dimana *random seed* merupakan angka yang dipakai sebagai bahan (seed/bibit) untuk menghasilkan bilangan random (Supranto, 2000). *Random* seed memiliki persamaan sebagai berikut:

 $Rs = -2^w$ sampai dengan $+2^w$ -1

Dimana : Rs = random seed

W = word size

2.8 Data Flow Diagram

Data Flow Diagram (DFD) digunakan untuk menggambarkan suatu sistem yang telah ada atau sistem baru yang akan dikembangkan secara logika tanpa mempertimbangkan lingkungan fisik di mana data itu mengalir (misalnya lewat telepon, surat) atau lingkungan fisik di mana data itu akan disimpan (misalnya file kartu, tape, disket). DFD merupakan alat yang digunakan pada metodelogi pengembangan sistem yang terstruktur. DFD juga merupakan alat yang cukup populer sekarang ini, karena dapat menggambarkan arus data di dalam sistem dengan terstruktur dan jelas (Hartono, 1999).

2.8.1 Simbol DFD

Ada empat simbol pokok di dalam menggambar suatu DFD dapat dilihat pada tabel 2.2, dengan menggunakan simbol Gane & Sarson (Kendall dan Kendall 1995; Hartono, 1999).

Tabel 2.1 Simbol Pokok DFD

No	Simbol	Nama	Keterangan
1		Entitas luar	Merupakan entitas di lingkungan luar sistem yang dapat berupa orang, organisasi atau sistem lainnya yang berada di lingkungan luarnya yang akan memberikan masukan atau menerima keluaran dari sistem.
2		Arus Data	Arus data mengalir di antara proses, simpanan data dan entitas luar. Arus data menunjukkan arus dari data yang dapat berupa masukan untuk sistem atau hasil dari proses sistem.

No	Simbol	Nama	Keterangan
3		Proses	Merupakan kegiatan yang dilakukan oleh orang, mesin atau komputer dari hasil suatu arus data yang masuk ke dalam proses untuk dihasilkan arus data yang akan keluar dari proses. Nama suatu proses biasanya berbentuk suatu kalimat diawali dengan kata kerja.
4		Simpanan Data	Merupakan simpanan data yang dapat berupa suatu file atau basis data di sistem komputer, suatu arsip atau catatan manual, suatu agenda atau buku.

2.8.2 Bentuk DFD

Terdapat dua bentuk DFD yaitu *physical data flow diagram* (PDFD) dan *logical data flow diagram* (LDFD) (Kendall dan Kendall, 1995; Hartono, 1999). PDFD lebih menekankan pada bagaimana proses dari sistem diterapkan sedang LDFD lebih menekankan pada proses apa yang terdapat di sistem.

PDFD lebih tepat digunakan untuk menggambarkan sistem yang ada (sistem yang lama). Penekanan dari PDFD adalah bagaimana proses – proses dari sistem diterapkan (dengan cara apa, oleh siapa dan di mana) termasuk proses manual.

LDFD lebih tepat digunakan untuk menggambarkan sistem yang akan diusulkan (sistem yang baru). LDFD tidak menekankan pada bagaimana sistem diterapkan, tetapi penekanannya hanya pada logika dari kebutuhan sistem yaitu proses apa secara logika yang dibutuhkan oleh sistem yang biasanya proses yang digambarkan hanya merupakan proses secara komputer saja.

2.8.3 Pembuatan DFD

Untuk memulai membuat DFD dari suatu sistem daftarkan semua komponen yang terlibat (entitas luar, proses, arus data dan simpanan data).

Setelah semua teridentifikasi maka dilanjutkan dengan melakukan langkah berikut (Kendall dan Kendall 1995):

1. Pembuatan context diagram

Context diagram adalah level tertinggi dalam sebuah DFD dan hanya berisi satu proses yang merupakan representasi dari suatu sistem. Proses dimulai dengan penomeran ke – 0 dan tidak berisi simpanan data.

2. Pembuatan diagram level 0

Diagram level 0 merupakan hasil pemecahan dari *Context diagram* menjadi bagian yang lebih terinci yang terdiri dari beberapa proses. Sebaiknya jumlah proses pada level ini maksimal 9 proses untuk menghindari diagram yang sulit untuk dimengerti. Setiap proses diberikan penomeran dengan sebuah bentuk *integer*. Simpanan data mulai ditampilkan pada level ini.

3. Pembuatan child diagram

Setiap proses pada diagram level 0 dipecah lagi agar didapat level yang lebih terinci lagi (child diagram). Proses pada level 0 yang dipecah lebih terinci lagi disebut parent process. Child diagram tidak menghasilkan keluaran atau menerima masukan yang mana parent process juga tidak menghasilkan keluaran atau menerima masukan. Semua arus data yang menuju ke atau keluar dari parent process harus ditampilkan lagi pada child diagram.

4. Pengecekan kesalahan

Pengecekan kesalahan pada diagram digunakan untuk melihat kesalahan yang terdapat pada sebuah DFD. Kesalahan yang umum terjadi dalam pembuatan DFD yaitu:

- a. Sebuah proses tidak mempunyai masukan atau keluaran.
- Simpanan data dengan entitas luar dihubungkan secara langsung tanpa melalui suatu proses.
- c. Kesalahan dalam penamaan pada proses atau pada arus data.
- d. Memasukkan lebih dari sembilan proses dalam sebuah diagram yang akan menyebabkan kebingungan dalam pembacaan.
- e. Membuat ketidaksesuaian decomposition pada child diagram. Setiap child diagram harus mempunyai masukan dan keluaran yang sama dengan parent process.

2.9 Entity Relationship Diagram

Bagi perancang basis data, Entity Relationship Diagram (ERD) berguna untuk memodelkan sistem yang nantinya akan dikembangkan basis datanya. Model ini juga membantu perancang basis data pada saat melakukan analisis dan perancangan basis data karena model ini dapat menunjukkan macan data yang dibutuhkan dan kerelasian antar data di dalamnya. Bagi pemakai, model ini sangat membantu dalam hal pemahaman model sistem dan rancangan basis data yang akan dikembangkan oleh perancang basis data (Sutanta, 2004). Sebuah ERD tersusun atas 3 komponen yaitu:

1. Entitas (entity).

Entitas menunjukkan obyek-obyek dasar yang terkait di dalam sistem. Obyek dasar dapat berupa orang, benda, atau hal yang keterangannya perlu disimpan di dalam basis data.

2. Atribut.

Atribut sering disebut sebagai properti yang merupakan keteranganketerangan yang terkait pada sebuah entitas yang perlu disimpan sebagai basis data. Atribut berfungsi sebagai penjelas sebuah entitas.

3. Kerelasian antar entitas.

Kerelasian antar entitas mendefinisikan hubungan antar dua buah entitas. Kerelasian antar entitas dapat dikelompokkan dalam tiga jenis yaitu kerelasian jenis satu ke satu (*one-to-one*), kerelasian jenis banyak ke satu (*many-to-one*), dan kerelasian jenis banyak ke banyak (*many-to-many*).

2.10 Uji Validitas Kuisioner Penelitian

Uji Validitas Kuesioner Penelitian adalah prosedur untuk memastikan apakah kuesioner yang akan dipakai untuk mengukur variabel penelitian valid atau tidak (Singarimbun, 1989). Valid berarti kuesioner tersebut dapat digunakan untuk mengukur apa yang hendak diukur.

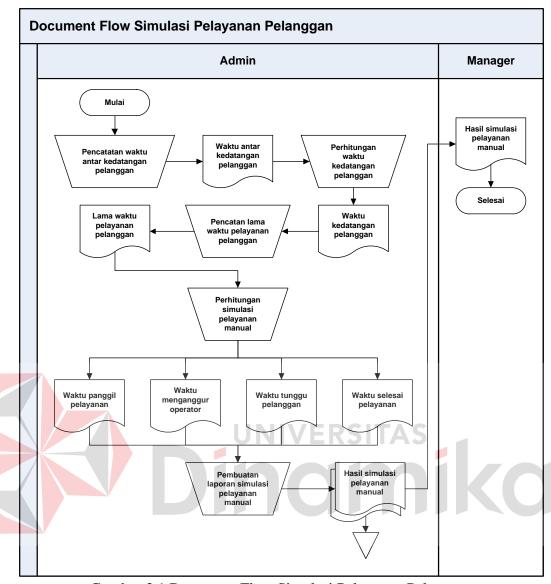
Kuesioner yang valid harus mempunyai validitas internal dan eksternal. Validitas internal (rasional) yang dimaksud adalah, bila kriteria yang ada dalam kuesioner secara rasional (teoritis) telah mencerminkan apa yang diukur, sedangkan kuesioner yang mempunyai validitas eksternal adalah, apabila kriteria di dalam kuesioner disusun berdasarkan fakta-fakta emperis yang telah ada (eksternal).

Validitas internal kuesioner harus memenuhi *construct validity* (validitas kontruks) dan *content validity* (validitas isi). Validitas konstruks adalah kerangka dari dari suatu konsep, dimana untuk mencari kerangka konsep dapat ditempuh dengan:

- Mencari definisi konsep yang dikemukakan oleh para ahli yang tertulis dalam literature.
- Jika dalam literatur tidak didapatkan definisi konsep yang ingin diukur, peneliti harus mendifinisikan sendiri konsep tersebut (dengan bantuan para ahli).
- Menanyakan definisi konsep yang akan diukur kepada calon responden atau orang yang mempunyai karakteristik yang sama dengan responden.

Sedangkan validitas isi kuesioner ditentukan oleh sejauh mana isi kuesioner tersebut mewakili semua aspek yang dianggap sebagai aspek kerangka konsep. Misal konsep yang mau diteliti terdiri dari tiga aspek, maka kuesioner yang dibuat harus menanyakan tentang ketiga aspek tersebut, jika hanya menanyakan satu aspek saja berarti kuesioner tersebut tidak memiliki validitas isi yang tinggi.

Validitas eksternal merupakan validitas yang diperoleh dengan cara mengkorelasikan kuesioner baru dengan tolok ukur eksternal yang sudah valid. Jika mau menciptakan kuesioner baru, maka hasil pengukurannya harus dikorelasikan dengan kuesioner yang sudah valid dengan menggunakan uji korelasi, bila korelasinya tinggi dan signifikan berarti kuesioner yang baru memiliki validitas yang memadai.


BAB III

ANALISIS DAN PERANCANGAN SISTEM

3.1 Analisis Sistem

Banyaknya waktu yang dipergunakan untuk melakukan pencatatan selang waktu kedatangan pelanggan, lama antrian, lama pelayanan pelanggan, serta lama waktu menganggur dari pihak pegawai loket apabila tidak adanya pelanggan yang melakukan transaksi pelayanan atau antrian karena pada sistem sebelumnya pencatatan dilakukan secara manual dengan penulisan pada kertas. Hal tersebut sangat berdampak sekali apabila pihak manajemen memerlukan data tersebut untuk pengambilan keputusan tentang kapan harus menambahkan loket pelayanan maupun jumlah kursi pengantrian, karena pihak manajemen harus dihadapkan dengan sejumlah yang sangat banyak dan membutuhkan waktu yang lama untuk mempelajarinya.

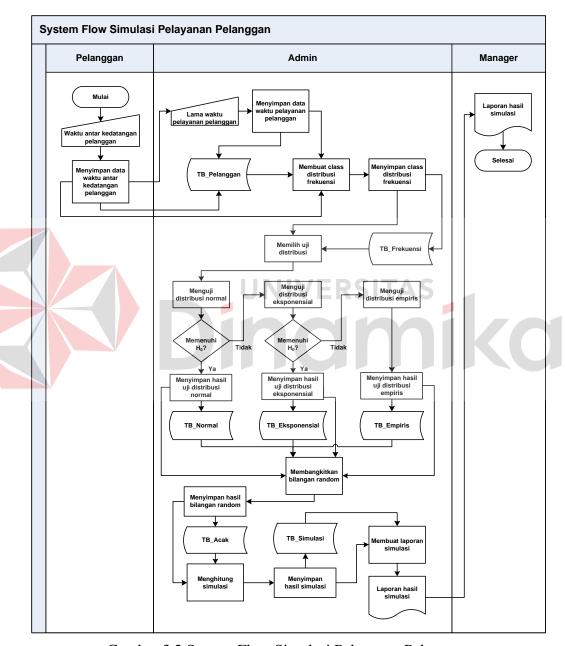
Gambar 3.1 menunjukkan gambar aliran dokumen pada PT. PLN (PERSERO) cabang Surabaya dimana alur prosesnya masih berjalan secara manual mulai dari proses pencatatan waktu antar kedatangan pelanggan, proses perhitungan waktu kedatangan pelanggan, proses pencatatan lama waktu pelayanan pelanggan, proses perhitungan simulasi pelayanan, dan proses pembuatan laporan simulasi pelayanan.

Gambar 3.1 Document Flow Simulasi Pelayanan Pelanggan

Karena proses atau pencatatan hasil perhitungan simulasi secara manual dirasakan sangat merepotkan dan memakan banyak waktu dan kertas, maka sangat diperlukan proses secara terkomputerisasi untuk memaksimalkan kerja sistem dalam program simulasi pelayanan pelanggan ini, supaya hal-hal yang bersifat sederhana dapat dilakukan secara cepat, efektif, dan efisien. Dengan kata lain, hal ini akan membawa dampak yang sangat signifikan terhadap kinerja pada PT. PLN (PERSERO) cabang Surabaya.

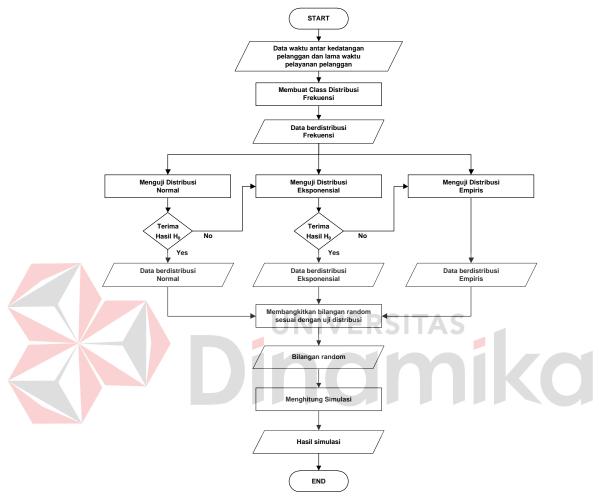
3.2 Perancangan Sistem

Tugas akhir yang penulis kembangkan merupakan pembuatan program simulasi pengolahan data yang mewakili perilaku dari sistem yang benar-benar mengacu pada kejadian-kejadian yang nyata untuk pelayanan pelanggan pada PT. PLN (PERSERO) cabang Surabaya. Program simulasi ini bertujuan untuk memprediksi jumlah loket pelayanan yang disiapkan pada hari yang ditentukan.


Pada permasalahan tersebut di atas, penulis mendapatkan beberapa event yang terjadi pada PT. PLN (PERSERO) cabang Surabaya yaitu event kedatangan dan event lama pelayanan pelanggan. Setelah data setiap event sudah didapatkan, penulis akan menganalisa data tersebut dengan menerapkannya pada program simulasi yang dibuat sehingga penulis dapat melihat perilaku data pada setiap event yang ada.

Program yang telah dijalankan memuat data yang berdistribusi kontinu, maka dimungkinkan bahwa penggunaan uji distribusi nantinya akan menggunakan uji Distribusi *Kolmogorov-Smirnov Normal* dan *Kolmogorov-Smirnov Eksponensial*. Penulis dalam mengembangkan program ini tidak menggunakan alat bantu apapun selain murni dari pengembangan rumus-rumus yang ada di buku teori tentang statistika maupun buku analisa dan sistem simulasi.

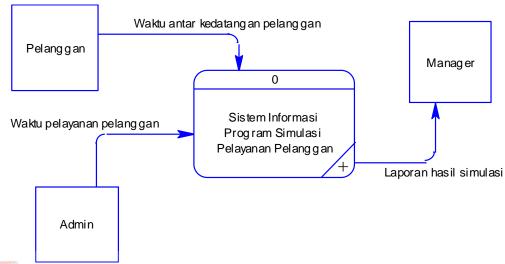
3.2.1 System Flow


Gambar 3.2 merupakan gambar alur sistem simulasi pelayanan pelanggan yang akan penulis kembangkan, gambar tersebut merupakan rangkaian dari proses-proses simulasi manual yang sudah terkomputerisasi yang dimulai dengan proses penyimpanan data waktu antar kedatangan pelanggan, proses penginputan dan penyimpanan data waktu pelayanan pelanggan, proses pembuatan class

Distribusi Frekuensi, proses uji Distribusi Normal, Eksponensial, dan Empiris, proses pembangkitan bilangan random, serta proses perhitungan simulasi dimana proses-proses tersebut dilakukan untuk membuat laporan yang nantinya akan diserahkan kepada pihak Manager.

Gambar 3.2 System Flow Simulasi Pelayanan Pelanggan

Di dalam pengembangan sistem ini, penulis menuangkan dalam bentuk Flowchart *Next-Event Time Advance* untuk menyelesaikan permasalahan yang terjadi. Flowchart *Next-Event Time Advance* ditunjukkan pada Gambar 3.3.


Gambar 3.3 Flowchart Next-Event Time Advance

3.2.2 Data Flow Diagram

Setelah penulis dapat mendefinisikan ruang lingkup dan dapat menentukan bagian-bagian yang akan diselesaikan menggunakan program simulasi. Kemudian penulis membuat alur diagram (DFD) dari model antrian PT. PLN (PERSERO) cabang Surabaya dengan metode *Discrete-Event Simulation*. DFD yang penulis bangun tersebut merupakan acuan untuk membuat modul yang harus dikerjakan.

A. Context Diagram

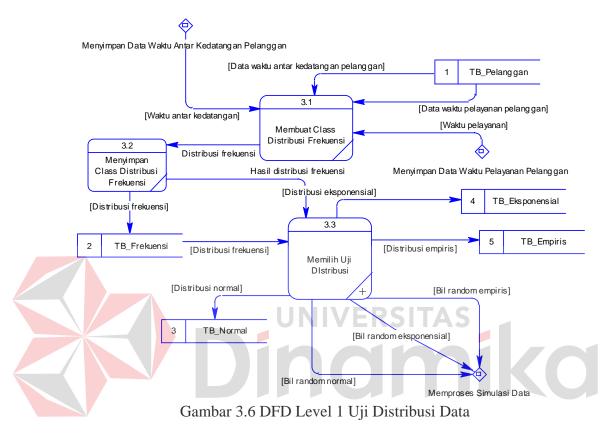
Context diagram pada program simulasi pelayanan pelanggan dengan metode Descrete-Event Simulation dapat dilihat pada Gambar 3.4:

Gambar 3.4 Context Diagram Sistem Informasi Program Simulasi Pelayanan Pelanggan.

UNIVERSITAS

Dalam context diagram diatas terdapat tiga buah entity yaitu Pelanggan, Admin, dan Manager. Context diagram ini dimulai dari Pelanggan menginputkan data berupa waktu antar kedatangan dan Admin menginputkan waktu pelayanan pelanggan yang nantinya data-data tersebut diuji untuk menentukan bahwa data-data tersebut apakah berdistribusi Normal, Eksponensial, atau Empiris. Setelah dilakukan uji distribusi, selanjutnya data tersebut disimulasikan. Dari data-data yang telah disimulasikan tersebut, maka hasilnya yang berupa laporan hasil simulasi diserahkan kepada Manager yang nantinya akan digunakan untuk pengambilan keputusan oleh pihak Manager.

Menyimpan Data Waktu Antar Pelanggan [Waktu antar kedatangan pelanggan] [Waktu pelayanan pelanggan] Waktu antar kedatang an Pelanggan Waktu antar kedatangan pelanggan kedatangan pelanggan TB_Frekuensi TB_Pelanggan aktu pelayanan pelanggar Menyimpan Data Distribusi frekuens Waktu pelayanan Pelanggan Distribusi frekuens Distribusi normal Bil random normal Menguji Distribusi Data TB Normal Bil random eksponensial Distribusi eksponensial Bil random empiris TB_Eksponensial TB_Empiris Distribusi empiris Bilangan random Distribusi empiris Bilangan random roses Simulasi [Laporan hasil simulasi] Distribusi normal 6 TB_Acak Hasil simulasi TB Simulasi


B. DFD Level 0 Sistem Informasi Program Simulasi Pelayanan Pelanggan

Gambar 3.5 DFD Level 0 Sistem Informasi Program Simulasi Pelayanan Pelanggan.

Seperti yang ditunjukkan oleh Gambar 3.5, DFD level 0 ini memiliki empat buah proses yaitu proses penyimpanan data waktu antar kedatangan pelanggan, proses penyimpanan data waktu pelayanan pelanggan, proses uji distribusi data, dan proses simulasi data. Proses pertama dimulai dari Pelanggan menginputkan data waktu kedatangan dan Admin menginputkan data lama pelayanan pelanggan dimana data-data tersebut di simpan ke dalam Tabel TB_Pelanggan. Data-data tersebut akan diuji pada proses uji distribusi data dan hasilnya pengujian tersebut akan disimpan pada TB_Frekuensi, TB_Normal, TB_Eksponensial, dan TB_Empiris. Data-data yang disimpan pada TB_Normal, TB_Eksponensial, dan TB_Empiris kemudian dipergunakan di dalam proses simulasi data, yang hasilnya disimpan ke dalam TB_Acak dan TB_Simulasi. Di

dalam proses simulasi data terdapat proses pembuatan laporan simulasi dimana laporan tersebut diserahkan ke pihak Manager.

C. DFD Level 1 Uji Distribusi Data

Pada Gambar 3.6 dijelaskan untuk proses pembuatan class Distribusi Frekuensi, data waktu antar kedatangan dan pelayanan pelanggan diambil dari TB_Pelanggan. Hasil perhitungan Distribusi Frekuensi disimpan ke dalam TB_Frekuensi, dimana hasil dari Distribusi Frekuensi tersebut akan dipergunakan untuk melakukan proses uji distribusi normal, eksponensial, atau empiris dan hasilnya disimpan pada TB_Normal, TB_Eksponensial, dan TB_Empiris. Dari hasil uji ketiga distribusi tersebut maka selanjutnya akan dilakukan pembangkitan bilangan random dari salah satu hasil uji distribusi.

[Bilang an random]

[Bil random normal] [Distribusi normal] [Bil random empiris] TB_Normal Menguji Distribusi Data TB_Eksponensial [Bil random eksponensial] [Distribusi eksponensial] Membangkitkan Random normal Bilangan Random eksponensial 5 TB Empiris [Distribusi empiris] 4.3 Random empiris Menyimpan 4.4 Hasil Bilangan Meng hitung Hasil bilangan random Random Menyimpan Hasil simulasi

4.5 Membuat Laporan

Simulasi

D. DFD Level 1 Proses Simulasi Data

Hasil_simulasi

[Hasil simulasi]

Hasil Simulas

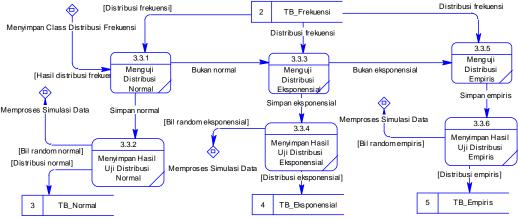
[Hasil simulasi]

TB_Simulasi

Gambar 3.7 DFD Level 1 Proses Simulasi Data

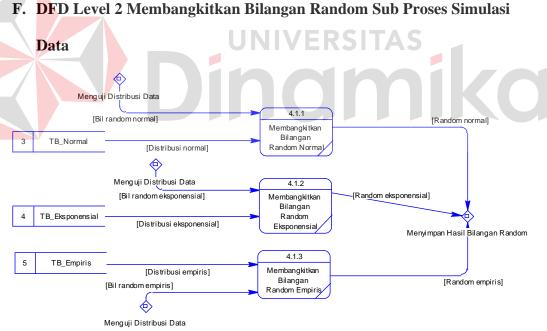
[Bilang an random]

6


[Laporan hasil simulasi]

TB_Acak

Manager

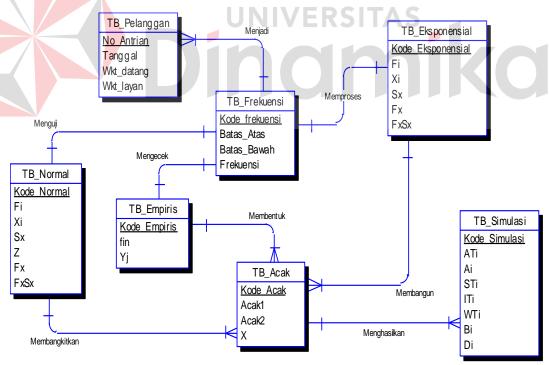

Pada Gambar 3.7 dijelaskan hasil Distribusi Normal, Eksponensial, dan Empiris diambil masing-masing dari TB_Normal, TB_Eksponensial, dan TB_Empiris. Kemudian data-data tersebut dipergunakan dalam proses pembangkitan bilangan random dan hasil bilangan random tersebut disimpan pada TB_Acak, yang selanjutnya dipakai pada proses perhitungan simulasi dimana hasilnya disimpan ke dalam TB_Simulasi. Proses selanjutnya yaitu pembuatan laporan simulasi, dimana hasil laporan diserahkan kepada pihak Manager.

E. DFD Level 2 Uji Distribusi Sub Uji Distribusi Data

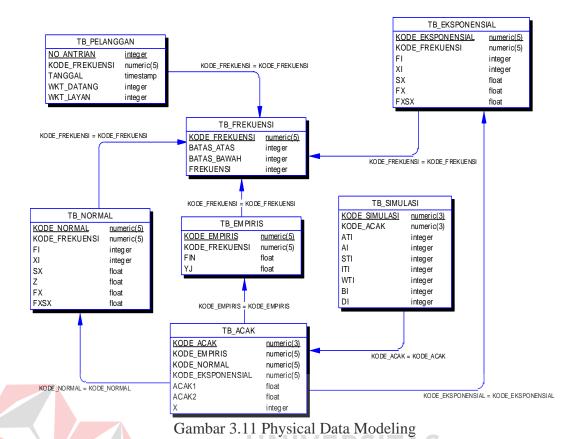
Gambar 3.8 DFD Level 2 Uji Distribusi Sub Uji Distribusi Data

Pada Gambar 3.8 dijelaskan bahwa data dari TB_Frekuensi diambil dan kemudian data tersebut dipergunakan pada proses uji Distribusi Normal, apabila memenuhi nilai normal maka hasil distribusi normal disimpan pada TB_Normal. Apabila uji distribusi tidak memenuhi nilai normal, maka selanjutnya dilakukan uji distribusi eksponensial. Apabila memenuhi nilai eksponensial, maka hasil uji distribusi disimpan pada TB_Eksponensial. Apabila uji distribusi tidak memenuhi nilai eksponensial, maka akan dilakukan proses uji distribusi empiris dimana hasilnya disimpan pada TB_Empiris. Setelah dilakukan proses uji distribusi, masing-masing hasil uji distribusi akan dilakukan proses pembangkitan bilangan random berdistribusi normal, eksponensial, atau empiris.

Gambar 3.9 DFD Level 2 Membangkitkan Bilangan Random Sub Proses Simulasi Data


Pada Gambar 3.9, dijelaskan bahwa hasil dari uji distribusi normal, eksponensial, atau empiris dipergunakan untuk membangkitkan bilangan random berdistribusi normal, eksponensial, atau empiris. Proses tersebut tergantung pada

nilai mana yang memenuhi pada saat dilakukan proses uji distribusi. Dimana data hasil uji distribusi tersebut diambil dari TB_Normal, TB_Eksponensial, dan TB_Empiris, yang kemudian dilakukan proses penyimpanan hasil bilangan random berdistribusi normal, eksponensial, atau empiris.


3.2.3 Entitiy Relationship Diagram

Entitiy Relationship Diagram (ERD) digunakan untuk menginterprestasikan, mentukan, dan mendokumentasikan kebutuhan-kebutuhan untuk pemrosesan sistem database serta menunjukkan relationship dari beberapa data dalam entitiy yang saling terhubung di dalam suatu sistem.

Berikut ini adalah *Entity Relationship Diagram* yang dibuat dalam merancang sistem database yang terdapat dalam gambar CDM dan PDM.

Gambar 3.10 Conceptual Data Modelling

Keterangan:

Pada Entity Relationship Diagram (ERD) pada Gambar 3.10 dan Gambar 3.11, terdapat 7 buah tabel yaitu TB_Pelanggan, TB_Frekuensi, TB_Normal, TB_Eksponensial, TB_Empiris, TB_Acak, dan TB_Simulasi. Tabel TB_Pelanggan dipergunakan untuk menyimpan data waktu kedatangan dan pelayanan pelanggan, Tabel TB_Frekuensi, TB_Normal, TB_Eksponensial, dan TB_Empiris masing-masing dipergunakan untuk menyimpan hasil Distribusi Frekuensi, Normal, Eksponensial, dan Empiris. Tabel TB_Acak digunakan untuk menyimpan data generate bilangan random, sedangkan Tabel TB_Simulasi dipergunakan untuk menyimpan data hasil simulasi.

3.2.4 Struktur Database

Dalam perancangan database ini menggambarkan deskripsi dari field-field pada proses perancangan database yang terwujud dalam bentuk tabel beserta keterangan yang diperlukan.

1. Nama tabel : TB_Pelanggan

Primary key : No_Antrian

Foreign key : ID_Frekuensi

Fungsi : Untuk menyimpan data pelanggan.

Tabel 3.1 TB_Pelanggan

Kolom	Panjang	Tipe	Batasan	Keterangan
No_Antrian	3	Number	PK	No antrian pelanggan
Kode_Frekuensi	3	Number	FK	Kode distribusi frekuensi
Tanggal		Timestamp		Tanggal sistem
Wkt_Datang		Integer		Waktu antar kedatangan pelanggan
Wkt_Layan		Integer		Waktu pelayanan pelanggan

2. Nama tabel : TB_Frekuensi

Primary key : Kode_Frekuensi

Foreign key : -

Fungsi : Untuk menyimpan data Distribusi Frekuensi.

Tabel 3.2 TB_Frekuensi

Kolom	Panjang	Tipe	Batasan	Keterangan
Kode_Frekuensi	5	Number	PK	Kode distribusi frekuensi
Batas_Atas		Integer		Nilai batas atas class
Batas_Bawah		Integer		Nilai batas bawah class
Frekuensi		Integer		Nilai frekuensi data

3. Nama tabel : TB_Normal

Primary key : Kode_Normal

Foreign key : Kode_Frekuensi

Fungsi : Untuk menyimpan hasil perhitungan Distribusi Normal.

Tabel 3.3 TB_Normal

Kolom	Panjang	Tipe	Batasan	Keterangan
Kode_Normal	5	Number	PK	Kode distribusi normal
Kode_Frekuensi	5	Number	FK	Kode distribusi frekuensi
Fi		Integer		Frekuensi kumulatif
Xi		Integer		Nilai tengah
Sx		Float		Data S(x)
Z		Float		Distribusi normal standar
Fx		Float		Data distribusi normal
FxSx		Float		Data S(x)-F(x)

4. Nama tabel : TB_Eksponensial

Primary key : Kode_ Eksponensial

Foreign key : Kode_Frekuensi

Fungsi : Untuk menyimpan hasil perhitungan Distribusi

Eksponensial.

Tabel 3.4 TB_Eksponensial

Kolom	Panjang	Tipe	Batasan	Keterangan
Kode_Eksponensial	5	Number	PK	Kode distribusi eksponensial
Kode_Frekuensi	5	Number	FK	Kode distribusi frekuensi
Fi		Integer		Frekuensi kumulatif
Xi		Integer		Nilai tengah
Sx		Float		Data S(x)
Fx		Float		Data F(x)
FxSx		Float		Data S(x)-F(x)

5. Nama tabel : TB_Empiris

Primary key : Kode_Empiris

Foreign key : Kode_Frekuensi

Fungsi : Untuk menyimpan hasil perhitungan Distribusi Empiris.

Tabel 3.5 TB_Empiris

Kolom	Panjang	Tipe	Batasan	Keterangan
Kode_Empiris	5	Number	PK	No distribusi empiris
Kode_Frekuensi	5	Number	FK	Kode distribusi frekuensi
Fin		Float		Nilai nilai fi/n
Yj		Float		Nilai kumulatif

6. Nama tabel : TB_Acak

Primary key : Kode_Acak

Foreign key : Kode_Normal

Kode_Eksponensial

Kode_Empiris

Fungsi : Untuk menyimpan data bilangan acak.

Tabel 3.6 TB_Acak

Kolom	Panjang	Tipe	Batasan	Keterangan
Kode_Acak	5	Number	PK	Kode data acak
Kode_Normal	5	Number	FK	Kode distribusi dormal
Kode_Eksponensial	5	Number	FK	Kode distribusi eksponensial
Kode_Empiris	5	Number	FK	No distribusi empiris
Acak1		Float		Bilangan acak 1
Acak2		Float		Bilangan acak 2
X		Integer		Bilangan acak berdistribusi

7. Nama tabel : TB_Simulasi

Primary key : Kode_Simulasi

Foreign key : Kode_Pelanggan

Kode_Operator

Fungsi : Untuk menyimpan data simulasi.

Tabel 3.7 TB Simulasi

Kolom	Panjang	Tipe	Batasan	Keterangan
Kode_Simulasi	3	Number	PK	Kode data simulasi
Kode_Acak	3	Number	FK	Kode pelanggan
ATi		Integer		Waktu antar kedatangan pelanggan
Ai		Integer		Jam masuk pelanggan ke dalam sistem
STi		Integer		Waktu pelayanan pelanggan
lti		Integer		Waktu menganggur operator
Wti		Integer		Waktu tunggu pelanggan
Bi		Integer		Jam masuk pelanggan pada pelayanan
Di		Integer		Jam pelayanan pelanggan selesai

3.2.5 Desain Input Output

Setelah membuat alur penyelesaian, DFD, ERD, dan perancangan database, maka dapat dibuat suati desain *input* dan *output* untuk mengartikan suatu desain sistem. Desain *input* dan *output* adalah suatu rancangan dari formform yang mengimplementasikan inputan dan rancangan *output* yang berupa laporan-laporan dimana laporan-laporan tersebut akan digunakan sebagai dokumentasi. Adapun desain input *input* dan *output* akan dijelaskan di bawah ini.

A. Desain Form Input Waktu Kedatangan dan Jumlah Pelanggan

Gambar 3.12 Desain Form Input Waktu Kedatangan dan Jumlah Pelanggan

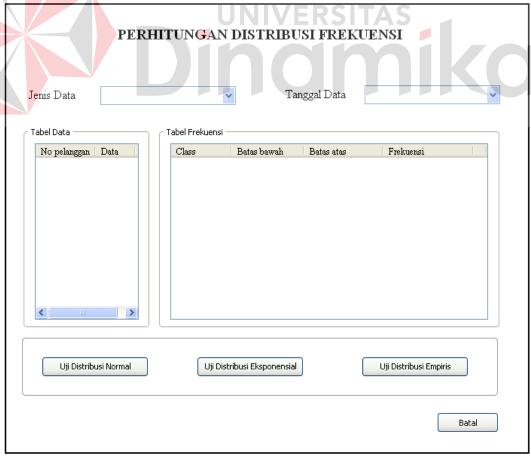
Pada form ini terdapat label tanggal data, textbox jumlah pelanggan textbox rentang waktu kedatangan pelanggan, dan tabel data kedatangan pelanggan. Form ini juga memiliki empat buah tombol yaitu tombol generate waktu kedatangan, tombol simpan, tombol bersih, dan tombol batal.

B. Desain Form Input Lama Waktu Pelayanan Pelanggan

Pada form ini terdapat label tanggal data, textbox jumlah pelanggan textbox rentang waktu pelayanan pelanggan, dan tabel data pelayanan pelanggan. Form ini juga memiliki empat buah tombol yaitu tombol generate waktu pelayanan, tombol simpan, tombol bersih, dan tombol batal.

	Tabel Pelayanan Pelanggan —————
Tanggal Data	No pelanggan Data pelayanan
Jumlah Pelanggan	
Rentang Waktu Pelayanan	-
Generate W	aktu Pelayanan
	UNIVERSITAS >
Simpan	Bersih Batal

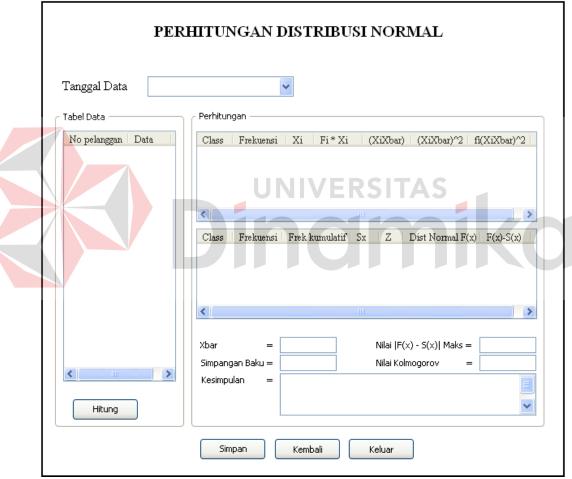
Gambar 3.13 Desain Form Input Lama Waktu Pelayanan Pelanggan


C. Desain Form Maintenance Data Operator

Pada form ini terdapat textbox kode operator, textbox nama operator, combobox status, dan tabel operator. Form ini juga memiliki lima buah tombol yaitu tombol tambah, tombol ubah, tombol hapus, tombol simpan, dan tombol batal.

	ATA OPERATOR
Kode Operator	Tabel Operator Nama operator Status
Nama Operator	
Status	
Tambah Ubah Hapus	()
Simpan	Batal

Gambar 3.14 Desain Form Maintenance Data Operator


D. Desain Form Distribusi Frekuensi

Gambar 3.15 Desain Form Distribusi Frekuensi

Pada form ini terdapat label tanggal data, combobox jenis data, tabel data, dan tabel frekuensi. Form ini juga memiliki empat buah tombol yaitu tombol uji Distribusi Normal, tombol uji Distribusi Eksponensial, tombol uji Distribusi Empiris, dan tombol batal.

E. Desain Form Distribusi Normal

Gambar 3.16 Desain Form Distribusi Normal

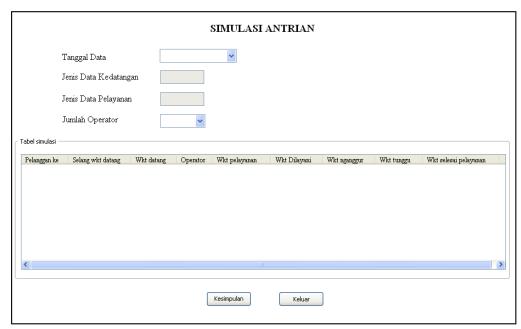
Form memiliki label tanggal, tabel data, tabel perhitungan Distribusi Normal dan perhitungan Kolmogorov-Smirnov Normal, texbox Xbar, Nilai |F(x)-S(x)| maksimal, simpangan baku, nilai kolmogorov, dan kesimpulan. Pada form

ini juga terdapat empat buah tombol yaitu tombol hitung, tombol simpan, tombol kembali, dan tombol keluar.

F. Desain Form Distribusi Eksponensial

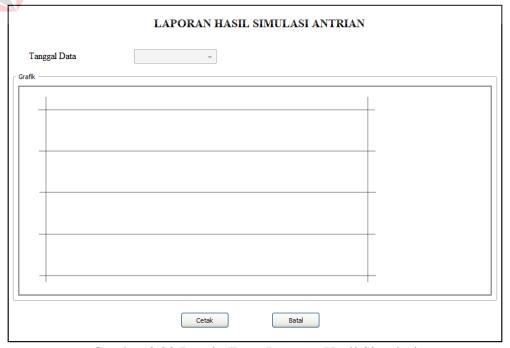
Form memiliki label tanggal, tabel data, tabel perhitungan Distribusi Eksponensial, texbox Xbar, Nilai |F(x)-S(x)| maksimal, nilai kolmogorov, dan kesimpulan. Pada form ini juga terdapat empat buah tombol yaitu tombol hitung, tombol simpan, tombol kembali, dan tombol keluar.

Gambar 3.17 Desain Form Distribusi Eksponensial


G. Desain Form Distribusi Empiris

Form memiliki label tanggal, tabel data, tabel perhitungan Distribusi Empiris. Pada form ini juga terdapat empat buah tombol yaitu tombol hitung, tombol simpan, tombol kembali, dan tombol keluar.

H. Desain Form Simulasi Antrian Pelayanan Pelanggan


Pada form ini terdapat label tanggal data, textbox jenis data kedatangan, textbox jenis data pelayanan, combobox jumlah operator, dan tabel simulasi. Form ini juga memiliki dua buah tombol yaitu tombol kesimpulan dan tombol keluar.

Gambar 3.19 Desain Form Simulasi Antrian Pelayanan Pelanggan

I. Desain Form Laporan Hasil Simulasi

Pada form ini terdapat label tanggal data, dan laporan hasil simulasi antrian. Form ini juga memiliki dua buah tombol yaitu tombol cetak dan tombol batal.

Gambar 3.20 Desain Form Laporan Hasil Simulasi

3.2.6 Pengolahan Data

Pada tahap ini dilakukan pengolahan terhadap data yang diperoleh dari pengamatan, yaitu data waktu kedatangan dan waktu pelayanan pelanggan. Adapun langkah-langkah yang dilakukan dalam pengolahan data tersebut adalah:

A. Pengelompokan Data Dengan Distribusi Frekuensi

Tabel 3.8 menujukkan data waktu antar kedatangan pelanggan pukul 08.00-14.00 WIB:

Tabel 3.8 Data Waktu Antar Kedatangan Pelanggan pada Pukul 08.00-14.00 WIB.

	No	Waktu	No	Waktu	No	Waktu		No	Waktu
	1	167	21	263	41	246		61	185
	2	243	22	234	42	266		62	410
	3	112	23	403	43	161		63	192
	4	490	24	133	44	113		64	161
	5	198	25	484	45	252		65	388
	6	411	26	474	 46	325		66	110
\setminus	7	495	27	468	47	140	78	67	207
	8	29 <mark>5</mark>	28	282	48	209		68	113
4	9	500	29	269	49	224		69	159
	10	274	30	277	50	253		70	386
N	11	181	31	241	51	479		71	323
	12	166	32	344	52	153		72	306
	13	271	33	400	53	357		73	283
	14	295	34	257	54	387		74	208
	15	147	35	306	55	186		75	179
	16	143	36	468	56	165		76	163
	17	392	37	194	57	442		77	319
	18	194	38	492	58	370		78	159
	19	262	39	475	59	319		79	214
	20	493	40	462	60	152		80	266

Dari data waktu antar kedatangan pelanggan tersebut maka akan dilakukan pengelompokan data ke dalam beberapa kelompok atau class data kemudian dihitung banyaknya data yang masuk ke dalam tiap class atau disebut Distribusi Frekuensi. Tabel Distribusi Frekuensi ditunjukkan pada Tabel 3.9.

110 0001	TTCKGCHST Date	t traited I III	tai ixeaataii
No.	Batas Bawah	Batas Atas	Frekuensi
1	110	166	17
2	167	223	12
3	224	280	15
4	281	337	11
5	338	394	8
6	395	451	5
7	452	508	12
		Jumlah	80

Tabel 3.9 Distribusi Frekuensi Data Waktu Antar Kedatangan Pelanggan

Untuk menentukan besarnya class data (panjang interval) dipergunakan Persamaan (2.6) dan untuk menentukan banyaknya class dipergunakan Persamaan (2.5).

B. Menguji Hipotesa Distribusi Data

Setelah melakukan perhitungan untuk membentuk Distribusi frekuensi, maka selanjutnya dilakukan pengujian terhadap data sample untuk mengetahui pola Distribusi Normal dan Eksponensial. Metode pengujian distribusi tersebut dibagi 2, yaitu:

- 1. Untuk uji Distribusi Normal digunakan uji keselarasan *Kolmogorov-Smirnov*Normal.
- 2. Untuk uji Distribusi Eksponensial digunakan uji keselarasan *Kolmogorov-Smirnov Eksponensial*.

Adapun langkah-langkah pengujian keselarasan *Kolmogorov-Smirnov*Normal di atas adalah:

- 1. Cari nilai Fi (frekuensi kumulatif) dari masing-masing class.
- 2. Cari nilai Xi (nilai tengah) untuk masing-masing data class.
- 3. Cari nilai μ (rata-rata) dapat didekati dengan \overline{X} . Dari rumus tersebut didapatkan \overline{X} sebesar 282,3185 \approx 282.

- 4. Selanjutnya cari nilai σ (simpangan baku atau standard deviasi) data dari sample (n) didapatkan σ sebesar 117,2401 \approx 117.
- 5. Cari nilai S(x) dari masing-masing class
- 6. Terakhir cari nilai Z untuk masing-masing class. Dapat dilihat pada Tabel 3.11, diterangkan bahwa nilai Z untuk masing-masing class. Dari nilai Z kemudian dicari Tabel Distribusi Normal dengan menggunakan Tabel Normal Standard, perolehan Tabel Distribusi Normal disebut dengan F(x). Nilai F(x) kemudian dikurangi dengan S(x), dan selanjutnya dicari nilai yang terbesar.

Tabel 3.10 Proses Hitung Distribusi Normal Data Waktu Antar Kedatangan Pelanggan

Batas Batas Frek nilai tengah Dist Normal |F(x)-S(x)|Frek (fi) S(x)No. Kumulatif (Fi Atas Bawah (Xi) F(x) 110 166 17 17 138 0.21 -1.2 0.1151 0.0974 167 223 12 29 195 0.36 -0.7 0.242 0.1205 3 224 280 15 44 252 0.55 -0.3 0.3821 0.1679 337 11 0.69 0.5793 55 309 0.2 0.1082 0.7 338 394 8 63 366 0.79 0.758 0.0295 0.8849 395 451 5 68 423 0.85 1.2 0.0349 508 12 480 1.7 0.9554 452 80 1 0.0446 80 Jumlah

- 7. Menetapkan α (taraf signifikansi), $\alpha = 0.05$
- 8. Menentukan daerah penolakan, $W_{I-\alpha}=0.1521$ (didapatkan dari Tabel Kolmogorov-Smirnov dengan n = 80 dan $\alpha=0.05$)
- 9. Dari Tabel Distribusi Normal didapatkan nilai |F(x)-S(x)| yang terbesar, kemudian dibandingkan dengan nilai dari Tabel *Kolmogorov-Smirnov* ($W_{I-\alpha}$). Dengan tingkat kepercayaan $\alpha=0.05$ dan n = 80, maka dari kejadian di atas: $T_{\text{hitung}} > W_{1-\alpha} = 0.1679 > 0.1521$, jadi hasil yang didapatkan adalah **Tolak H**₀. Maka dapat disimpulkan bahwa data waktu antar kedatangan pelanggan **tidak berdistribusi Normal**.

Karena data waktu antar kedatangan pelanggan diatas tidak berdistribusi normal, maka selanjutnya dilakukan proses pengujian keselarasan *Kolmogorov*-

Smirnov Eksponensial. Adapun langkah-langkah pengujian keselarasan Kolmogorov-Smirnov Eksponensial adalah:

- 1. Cari nilai Fi (frekuensi kumulatif) dari masing-masing class.
- 2. Cari nilai Xi (nilai tengah) untuk masing-masing class.
- 3. Cari nilai frekuensi dikalikan dengan nilai tengah masing-masing class.
- 4. Cari nilai S(x) dari masing-masing class.
- Terakhir cari nilai F(x) untuk masing-masing class. Dapat dilihat pada Tabel
 3.11, diterangkan bahwa nilai F(x) untuk masing-masing class. Nilai F(x) kemudian dikurangi dengan S(x), dan selanjutnya dicari nilai yang terbesar.

Tabel 3.11 Proses Hitung Distribusi Eksponensial Data Waktu Antar Kedatangan Pelanggan.

					50*****				
No.	Batas Atas	Batas Bawah	Frek (fi)	Frek Kumulatif (Fi)	nilai tengah (Xi)	(fi * Xi)	S(x)	F(x)	F(X)-S(x)
	110	166	17	17	138	2346	0.21	0.23	0.02
2	167	223	12	29	195	2340	0.36	0.31	0.05
3	224	280	15	44	252	3780	0.55	0.38	0.17
4	281	337	11	55	309	3399	0.69	0.45	0.24
5	338	394	8	63	366	2928	0.79	0.5	0.29
6	395	451	5	68	423	2115	0.85	0.56	0.29
7	452	508	12	80	480	5760	1	0.6	0.4
		Jumlah	80				•	•	

- 10. Menetapkan α (taraf signifikansi), $\alpha = 0.05$
- 11. Menentukan daerah penolakan, $W_{I-\alpha}=0.1521$ (didapatkan dari Tabel Kolmogorov-Smirnov dengan n = 80 dan $\alpha=0.05$)
- 12. Dari Tabel Distribusi Eksponensial didapatkan nilai |F(x)-S(x)| yang terbesar, kemudian dibandingkan dengan nilai dari Tabel *Kolmogorov-Smirnov* ($W_{I-\alpha}$). Dengan tingkat kepercayaan $\alpha=0.05$ dan n = 80, maka dari kejadian di atas: $T_{\text{hitung}}>W_{1-\alpha}=0.1679>0.1521$, jadi hasil yang didapatkan adalah **Tolak H**₀. Maka dapat disimpulkan bahwa data waktu antar kedatangan pelanggan **tidak berdistribusi Eksponensial**.

Karena kedua uji distribusi yang digunakan untuk menduga data waktu antar kedatangan pelanggan menyatakan ditolak, maka tanpa alasan apapun upaya untuk melakukan proses simulasi terhadap data tersebut harus menggunakan Distribusi Empiris. Adapun langkah-langkah perhitungan untuk menduga data antar kedatangan PT. PLN (PERSERO) tersebut antara lain:

- 1. Bagilah nilai frekuensi masing-masing class dengan n.
- 2. Yang terakhir cari nilai persentase kumulatif (Yj), dimana proses tersebut dapat dilihat pada Tabel 3.12.

Tabel 3.12 Proses Hitung Distribusi Empiris Data Waktu Antar Kedatangan Pelanggan.

	No.	Batas bawah (XLj)	Batas atas (XUj)	Frek (fi)	fi/n	Kumulatif (Yj)
	1	110	166	17	0.21	0.21
	2	167	223	12	0.15	0.36
1	3	224	280	15	0.19	0.55
	4	281	337	11 R	0.14	0.69
-	5	338	394	8	0.1	0.79
	6	395	451	5	0.06	0.85
	7	452	508	12	0.15	0.99
_			lumlah	90	1	

3.3 Rancangan Evaluasi Hasil

Dari proses perancangan sistem di atas, penulis membuat suatu rancangan evaluasi hasil dari tugas akhir ini. Adapun rancangan evaluasi hasil yang dibuat dapat dilihat pada Tabel 3.13.

Tabel 3.13 Rancangan Evaluasi Hasil

Test Case	Tujuan	Input	Output Diharapkan	Output Program	Hasil
1	Deskripsi username dan password yang tidak valid	Memasukkan data login username dan password yang salah	Muncul pesan warning, username not found.		
2	Menambah data operator	Menginputkan id operator, password, beserta data lainnya dan menekan tombol add	Muncul pesan data operator berhasil ditambahkan		

Test Case	Tujuan	Input	Output Diharapkan	Output Program	Hasil
3	Mengupdate data operator	Memilih data operator dan mengubahnya, kemudian menekan tombol save	Muncul pesan data operator berhasil diupdate		
4	Mengambil nomor antrian	Menekan tombol ambil nomor antrian	Nomor antrian berubah		
5	Melakukan monitoring antrian	Klik pada antrian per tanggal yang akan dimonitoring	Muncul data antrian pada tanggal yang dipilih		
6	Menghitung distribusi frekuensi tanpa melakukan seleksi data	Tekan tombol proses data awal sebelum melakukan seleksi data	Muncul pesan eror, data yang akan dihitung belum siap		
7	Menyeleksi data antrian yang akan dihitung	Pilih data pada tanggal yang ditentukan, pilih data yang akan dihitung, kemudian klik tombol select data	Muncul data nomor antrian pelanggan, waktu kedatangan pelanggan, waktu antar kedatangan pelanggan, dan waktu lama pelayanan pelanggan		
8	Menghitung distribusi frekuensi data antrian	Menekan tombol proses data awal	Muncul jumlah data, rata-rata waktu antar kedatangan, standard deviasi, jumlah class, interval class, dan datagrid tabel distribusi frekuensi		
	Managarillan farm	Menekan tombol distribusi	tabel distribusi frekuensi		
9	Menampilkan form distribusi normal, eksponensial, atau empiris sebelum proses distribusi frekuensi	normal, eksponensial, atau empiris sebelum melakukan proses perhitungan distribusi frekuensi	Muncul pesan eror, data yang akan dihitung belum siap	1,	
10	Menghitung distribusi	Menekan tombol hitung distribusi	Muncul datagrid tabel distribusi normal		
11	Menggenerate bilangan acak normal	Menekan tombol generate bilangan acak	Data bilangan acak berdistribusi normal muncul pada datagrid tabel acak normal		
12	Menghitung distribusi eksponensial	Menekan tombol hitung distribusi	Muncul datagrid tabel distribusi eksponensial		
13	Menggenerate bilangan acak eksponensial	Menekan tombol generate bilangan acak	Data bilangan acak berdistribusi eksponensial muncul pada datagrid tabel acak eksponensial		
14	Menghitung distribusi empiris	Menekan tombol hitung distribusi	Muncul datagrid tabel distribusi empiris		
15	Menggenerate bilangan acak empiris	Otomatis keluar setelah tombol hitung distribusi ditekan	Data bilangan acak berdistribusi empiris muncul pada datagrid tabel acak empiris		
16	Menyimpan bilangan acak berdistribusi	Menekan tombol save result	Data bilangan acak berdistribusi tersimpan ke dalam database		
17	Memunculkan bilangan acak berdistribusi yang sudah tersimpan	Menekan tombol load result	Data bilangan acak yang tersimpan muncul pada datagrid tabel distribusi		

Test Case	Tuinan	Input	Output Diharapkan	Output Program	Hasil
18	Mempersiapkan data dan jumlah loket yang akan disimulasikan	tanggal data yang akan di	Muncul data yang akan disimulasikan dan jumlah loket pada datagrid tabel simulasi		
19	Melakukan proses perhitungan simulasi data	simulasi setelah melakukan	Muncul hasil perhitungan simulasi pada datagrid tabel simulasi dan kesimpulan		

BAB IV

IMPLEMENTASI DAN EVALUASI

4.1 Implementasi

Sebelum menjalankan aplikasi ini, ada hal yang harus diperhatikan yaitu kebutuhan sistem. Tujuan pokok dari sistem komputer adalah mengolah data untuk menghasilkan informasi. Dalam melaksanakan tujuan pokok tersebut diperlukan adanya elemen-elemen yang mendukung. Elemen-elemen dari sistem tersebut antara lain adalah *hardware* (perangkat keras komputer) dan *software* (perangkat lunak komputer).

4.1.1 Kebutuhan Sistem

Dalam merancang dan membangun sistem informasi program simulasi pelayanan pelanggan ini ada beberapa spesifikasi perangkat keras dan perangkat lunak yang dibutuhkan sebagai berikut :

A. Kebutuhan Perangkat Keras

Perangkat keras adalah komponen fisik peralatan yang membentuk sistem komputer, serta peralatan lain yang mendukung komputer dalam menjalankan tugasnya. Sifat umum dari perangkat keras adalah dapat dilihat dan dipegang bentuk fisiknya. Adapun perangkat keras yang dibutuhkan untuk menjalankan aplikasi ini yaitu :

- 1. *Processor* Intel Pentium III 600 atau lebih
- 2. Memory 256 Mb atau lebih,
- 3. VGA Card minimal 128 Mb,

- 4. Harddisk 10 Gb atau lebih,
- 5. Monitor dengan resolusi minimal 800 x 600,
- 6. Mouse dan keyboard.

B. Kebutuhan Perangkat Lunak

Perangkat lunak merupakan kebalikan dari perangkat keras dimana fisiknya adalah mempunyai bentuk fisik yang tidak dapat dipegang. Adapun perangkat lunak yang dibutuhkan dalam desain dan implementasi sistem ini adalah:

- 1. Sistem operasi menggunakan Microsoft Windows XP Professional Service
 Pack 2.
- 2. Perancangan sistem menggunakan Power Designer 6.0.
- 3. Pembuatan aplikasi menggunakan Microsoft Visual Studio 2008.
- 4. Database untuk pengolahan data menggunakan Microsoft SQL Server 2005.

4.1.2 Implementasi Simulasi

Setelah dilakukan uji coba distribusi data maka proses selanjutnya adalah proses pembangkitan bilangan random berdistribusi dan proses simulasi data.

A. Pembangkitan Bilangan Random Berdistribusi Empiris

Karena pada sebelumnya didapatkan data waktu antar kedatangan pelanggan adalah berdistribusi Empiris, maka selanjutnya akan dilakukan proses pembangkitan bilangan random berdistribusi Empiris. Pembangkitan bilangan random ini dapat dilakukan dengan menggunakan Rumus (2.15). Hasil dari Pembangkitan bilangan random berdistribusi Empiris dapat dilihat pada Tabel 4.1.

Tabel 4.1 Hasil Pembangkitan Bilangan random Berdistribusi Empiris..

No	U (acak)	Х									
1	0.04	120	21	0.77	384	41	0.23	175	61	0.67	329
2	0.37	226	22	0.74	367	42	0.32	208	62	0.58	293
3	0.82	427	23	0.40	235	43	0.51	268	63	0.58	295
4	0.05	122	24	0.07	130	44	0.26	187	64	0.23	176
5	0.23	173	25	0.97	502	45	0.88	465	65	0.71	352
6	0.48	427	26	0.13	145	46	0.45	252	66	0.11	140
7	0.96	494	27	0.37	227	47	0.85	454	67	0.71	351
8	0.78	389	28	0.90	473	48	0.04	120	68	0.40	236
9	0.37	228	29	0.81	417	49	0.55	280	69	0.58	294
10	0.68	334	30	0.04	121	50	0.46	253	70	0.11	140
11	0.28	193	31	0.67	328	51	0.46	253	71	0.35	218
12	0.48	259	32	0.11	138	52	0.44	249	72	0.10	137
13	0.61	306	33	0.91	477	53	0.47	257	73	0.17	155
14	0.69	335	34	0.27	191	54	0.74	368	74	0.36	224
15	0.06	126	35	0.39	233	55	0.38	230	75	0.50	265
16	0.95	494	36	0.84	443	56	0.87	459	76	0.99	507
17	0.82	427	37	0.51	268	57	0.48	258	77	0.66	326
18	0.05	122	38	0.84	441	58	0.94	488	78	0.48	261
19	0.53	274	39	0.94	488	59	0.52	272	79	0.06	126
20	0.38	229	40	0.66	323	60	0.86	458	80	0.78	386

Nilai X pada Tabel 4.1 nantinya akan dipergunakan sebagai waktu antar kedatangan pelanggan (ATi) pada proses simulasi.

B. Proses Simulasi

Setelah ditentukan bilangan random berdistribusi Empiris, selanjutnya akan dilakukan proses simulasi. Pada kali ini akan dilakukan 2 proses simulasi, yaitu proses simulasi pertama dengan mengaktifkan 4 loket dan proses simulasi kedua dengan mengaktifkan 2 loket yang nantinya akan dapat dilihat utilitas dari loket-loket yang diaktifkan apakah loket-loket tersebut sudah dianggap sudah efektif dan efisien atau tidak. Proses-proses simulasi tersebut dapat dilihat pada Tabel 4.2 dan Tabel 4.3.

		D4																																									
	et 4	B4																																									
	Loket 4	WT4																																									
		П4		120	226	427	122	173	427	464	389	228	334	193	259	306	332	126	494	427	122	274	229	384	367	235	130	205	145	227	473	417	121	328	138	477	191	233	443	268	441	488	323
		D3				1361			1821			2962			3962			4714			5418			6558			7302			8070			9123			10070			10935			12225	
	et 3	B3				773			1495			2606			3650			4363			5092			6092			6823			7698			8709			9652			10520			11717	
	Loket 3	WT3				0			0			0			0			0			0			0			0			0			0			0			0			0	
		T3		120	226	427			134			785			430			197			488			671			263			393			636			526			446			778	
4 Loket		D2			968			1411			2953			3867			4690			5381			6475			7113			8037			8909			9730			10486			11584		
Tabel 4.2 Proses Simulasi 4 Loket	t 2	B2	1		346			1068			2378			3484			4216			4898	E		2962			6693	Ī	7	7470	S	•	8288			9176			10076			11229		
Proses 5	Loket 2	WT2			0)		0			0			0			0			0			0			0			0			0			0			0			0		
abel 4.2		IT2		120	226			172			296			180			166			390			324			216			355			548			263			343			739		
L		D1		611			1405			2519			3663			4229			4875			5824			6774			7847			8592			9428			10170			11385			12362
	t 1	B1		120			895			1989			3183			3921			4506			5474			6458			7325			8171			9037			9843			10788			12040
	Loket 1	WT1		0			0			0			0			0			0			0			0			0			0			0			0			0			0
		П		120			284			584			421			32			424			601			632			549			321			442			412			614			651
		STI		491	550	588	510	343	326	230	2/2	356	480	383	312	308	474	351	369	483	326	320	208	466	316	420	479	522	292	372	421	321	414	391	554	418	327	410	415	262	355	208	322
		Ai	0	120	346	773	895	1068	1495	1989	2378	2606	2940	3133	3392	3698	4033	4159	4653	5080	5202	5476	5705	6089	6456	6691	6821	7323	7468	2692	8168	8585	8706	9034	9172	9649	9840	10073	10516	10784	11225	11713	12036
		ATI		120	226	427	122	173	427	494	389	228	334	193	259	306	335	126	494	427	122	274	229	384	367	235	130	502	145	227	473	417	121	328	138	477	191	233	443	268	441	488	323
		No.		-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40

	4											Ţ																						7						ſ
	D4																								\downarrow									21811						
t 4	B4																																	21335						
Loket 4	WT4																																	0						
	П4	175	208	268	187	465	252	454	120	280	253	253	249	257	368	230	459	258	488	272	458	329	293	295	176	140	351	236	294	140	218	137	155	224						
	D3	H	12818			13812			14713			14956			15829			16777			17994			18911		19578			20460		_	20955			21600					
	Δ											4		_	_			167						186		-					4			-						
Loket 3	B3		12423			13344			14170			14956			15829			16777			17994			18911		19578			20460			20955			21600					
P	WT3	:	0			0			0			0			0			0			0			0		0	•		0			0			0					
	EII		194			521			353			238			698			943			1213			913		664	3		878			491			640					
	D2	12674			13275		14106			14450			15205			16059			17265			18323			19087		19930			20600			21110							
	2	H							Н	\dashv		\dashv	\dashv		\dashv	\dashv			Н			\dashv		+	+		╁			\dashv		\dashv	\dashv		_					
Loket 2	B2	12216			12879		13596			14450			15205			16059			17265			18323	V		19087	K	19930	L		20600	1	110	21110		Ц					
Ľ	WT2	0			0		0			0			0			0			0			0			0		0			0			0							
	172	627			200		316			339			750			820			1201			1054			760		839			999			909							
	5			13284				14607			14703			15462			16518			17537			18616		0070	6046		20166			20818									
	B1			12691				14050			14703			15462			16518			17537			18616		7070	+		20166			20818									
Loket 1																									1															
	WT1			0				0			0			0			0			0			0)		0			0									
	ī			325				761			91			754			1052			1014			1075		6	20		723			648									
	STI	458	395	293	396	468	510	222	543	413	591	406	402	377	378	326	268	312	467	439	304	313	429	378	590	576	420	437	403	487	574	413	561	476	309	463	415	522	432	
	Α	12211	12419	12687	12874	13339	13591	14045	14165	14445	14698	14951	15200	15457	15825	16055	16514	16772	17260	17532	17990	18319	18612	18907	19083	19575	19926	20162	20456	20596	20814	20951	21106	21330	21595	22102	22428	22689	22815	
	ATI	H													_										176												326			
		H													+		26								+	+					-									

Jalan proses simulasi pada Tabel 4.2 adalah sebagai berikut:

- PT. PLN (PERSERO) cabang Surabaya dibuka pada pukul 08.00 14.00
 WIB, maka dapat dihitung total waktu buka adalah sebesar 21600 (dalam detik).
- Pelanggan pertama (Pelanggan 1) datang pada detik ke 120. Maka dapat dihitung total waktu menganggur awal dari Loket 1, 2, 3, dan 4 adalah selama 120 detik. Begitu seterusnya.
- 3. Waktu menganggur loket didapat dari pengurangan waktu datang Pelanggan n dikurangi dengan waktu selesai pelayanan Pelanggan n-1.
- 4. Karena keempat loket tidak ada melakukan pelayanan maka Pelanggan 1 langsung dilayani pada Loket 1 dan tidak melakukan pengantrian.
- 5. Ketika Pelanggan 2 datang, pelanggan tersebut langsung dilayani pada Loket 2 karena Loket 1 masih melakukan pelayanan pada Pelanggan 1. Begitu seterusnya.
- 6. Namun ketika Pelanggan 46 datang, Loket 1 dan 2 ternyata sudah tidak melakukan pelayanan, namun karena Loket 2 terlebih dahulu selesai melakukan pelayanan daripada Loket 1, maka Pelanggan 46 langsung dilayani oleh Loket 2. Hal tersebut dapat dilihat dari waktu/nilai D2 < D1 (waktu selesai pelayanan)
- 7. Setelah Pelanggan 75 datang, untuk selanjutnya PT. PLN (PERSERO) tidak menerima pelanggan baru karena sudah melewati waktu kerja perusahaan. Namun setelah waktu kerja perusahaan selesai, PT. PLN masih harus melayani pelanggan yang masih ada di dalam perusahaan yang masih belum terlayani.

8. Setelah semua pelanggan selesai terlayani, dapat dihitung nilai utilitas dari masing-masing loket yaitu dengan cara mengurangi total waktu kerja dengan waktu menganggur loket yang hasilnya dibagi dengan total waktu kerja kemudian dikalikan dengan 100%.

(total waktu kerja – total waktu menganggur loket) / total waktu kerja x 100%

Karena utilitas yang didapat dari masing-masing loket belum mencapai nilai utilitas optimal yaitu nilai di atas 70%, maka selanjutnya akan dilakukan proses simulasi yang kedua dengan mengurangi 2 buah loket, yaitu proses simulasi dengan menggunakan 2 buah loket. Untuk proses simulasinya dapat dilihat pada Tabel 4.3. Jalan proses simulasi pada Tabel 4.3 adalah sebagai berikut:

- 1. PT. PLN (PERSERO) cabang Surabaya dibuka pada pukul 08.00 14.00 WIB, maka dapat dihitung total waktu buka adalah sebesar 21600 (dalam detik).
- Pelanggan pertama (Pelanggan 1) datang pada detik ke 120. Maka dapat dihitung total waktu menganggur dari Loket 1 dan 2 adalah selama 120 detik. Begitu seterusnya.
- 3. Waktu menganggur loket didapat dari pengurangan waktu datang Pelanggan n dikurangi dengan waktu selesai pelayanan Pelanggan n-1.
- 4. Karena kedua loket tidak ada melakukan pelayanan maka Pelanggan 1 langsung dilayani pada Loket 1 dan tidak melakukan pengantrian.
- Ketika Pelanggan 2 datang, pelanggan tersebut langsung dilayani pada Loket 2 karena Loket 1 masih melakukan pelayanan pada Pelanggan 1. Begitu seterusnya.

- 6. Ketika Pelanggan 19 datang, Loket 1 dan 2 ternyata sudah tidak melakukan pelayanan, karena Loket 2 terlebih dahulu selesai melakukan pelayanan daripada Loket 1, maka Pelanggan 19 dilayani oleh Loket 2. Hal tersebut dapat dilihat dari waktu/nilai D2 < D1 (waktu selesai pelayanan). Namun ternyata waktu kedatangan Pelanggan 19 lebih kecil daripada waktu selesai pelayanan Loket 2, maka Pelanggan 19 melakukan antrian selama 52 detik dimana dapat dihitung dari lama pelayanan Loket 2 dikurangi waktu datang Pelanggan 19.
- 7. Setelah Pelanggan 75 datang, untuk selanjutnya PT. PLN (PERSERO) tidak menerima pelanggan baru karena sudah melewati waktu kerja perusahaan.
 Namun setelah waktu kerja perusahaan selesai, PT. PLN masih harus melayani pelanggan yang masih ada di dalam perusahaan yang masih belum terlayani.
- 8. Setelah semua pelanggan selesai terlayani, dapat dihitung nilai utilitas dari masing-masing loket yaitu dengan cara mengurangi total waktu kerja dengan waktu menganggur loket yang hasilnya dibagi dengan total waktu kerja kemudian dikalikan dengan 100%.

(total waktu kerja – total waktu menganggur loket) / total waktu kerja x 100%

Penambahan atau pengurangan loket diberlakukan apabila nilai utilitas dari loket dianggap masih belum memenuhi nilai optimal. Penambahan loket dilakukan jika nilai utilitas yang dirasakan terlalu besar, sedangkan pengurangan loket dilakukan jika nilai utilitas lebih kecil daripada nilai utilitas optimal. Karena nilai utilitas pada simulasi kedua sudah memenuhi nilai utilitas optimal yaitu di atas 70%, maka proses simulasi dinyatakan telah selesai dilakukan.

5878 **D**2 5528 **B**2 WT2 226 2 Ы Tabel 4.3 Proses Simulasi 2 Loket B1 WT1 Ξ 550 550 343 326 530 530 575 575 386 383 312 474 474 351 369 369 350 508 466 316 Sti Ati 16 17 17 19 19 19 19 22 22 23 23 25 25 25 25 26 27 ŝ ω $^{\circ}$

473 417 121 121 328 138 477 477 191 233 443 268 441 488				1				•	
417 417 121 328 138 477 477 443 233 443 441 441 488			Loketa	et			Lok	Loket 2	
473 417 121 328 328 138 477 191 233 443 443 443 443 443 444 441 441	Sŧi	IT1	WT1	B1	10	IT2	WT2	B2	D2
121 121 328 138 138 477 191 233 443 268 441 441 488	421	133		8168	8589				
121 328 138 477 477 191 233 443 268 441 481 488	321					368		8585	9068
328 138 477 191 233 443 268 268 441 441 488	414	117		8706	9120				
138 477 191 233 443 268 441 481 488	391					128		9034	9425
477 191 233 443 268 441 441 488	554	52		9172	9726				
233 2443 268 441 441 488 323	418					224		9649	10067
233 443 268 441 488 323	327		114	9954	10281				
443 268 441 488 323	410					9		10073	10483
268 441 488 323	415	235		10516	10931				
441 488 323	269					301		10784	11381
488 323	355	294		11225	11580				
323	208			J		332		11713	12221
	322	456		12036	12358				
41 175 12211	458						10	12221	12679
42 208 12419	395	61		12419	12814				
43 268 12687	593			Е		8		12687	13280
44 187 12874	396	09		12874	13270				
	468	69		13339	13807				
46 252 13591	510					311		13591	14101
	222	238		14045	14602				
48 120 14165	543			A		64		14165	14708
	413		157	14602	15015				
50 253 14698	591						10	14708	15299
51 253 14951	406		64	15015	15421				
52 249 15200	402						66	15299	15701
53 257 15457	377	36		15457	15834				
	378					124		15825	16203
55 230 16055	326	221		16055	16411				
56 459 16514	268					311		16514	17082

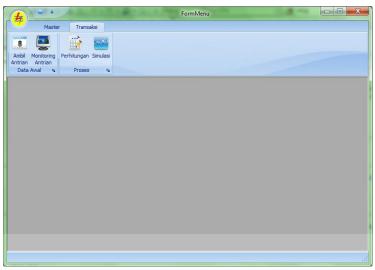
									-	0 10	
					Loker	er i			LOK	Loket 2	
No	Ati	Ai	Sti	IT1	WT1	B1	Ы	IT2	WT2	B2	D2
25	258	16772	312	361		16772	17084				
58	488	17260	467					178		17260	17727
69	272	17532	439	448		17532	17971				
09	458	17990	304					263		17990	18294
61	329	18319	313	348		18319	18632				
62	293	18612	429					318		18612	19041
63	295	18907	378	275		18907	19285				
64	176	19083	069					42		19083	19673
65	352	19435	360	150		19435	19795				
99	140	19575	929						86	19673	20249
29	351	19926	420	131		19926	20346				
89	236	20162	437			J			87	20249	20686
69	294	20456	403	110		20456	20859				
20	140	20596	487						06	20686	21173
71	218	20814	574		45	20859	21433				
72	137	20951	413						222	21173	21586
73	155	21106	561		327	21433	21994				
74	224	21330	476			25			256	21586	22062
75	265	21595	309		399	21994	22303				
9/	202	22102	463			T.					
2.2	326	22428	415			A					
78	261	22689	522			S					
79	126	22815	432								
80	386	23201	342								
				6127	=	71.63 %	%	5143	II	76.19 %	%

C. Hasil dan Kesimpulan Simulasi

Dari Proses simulasi pertama dapat dilihat nilai utilitas dari Loket 1=38,18%, Loket 2=41,61%, Loket 3=42,46%, dan Loket 4=1,23%. Dari hasil utilitas loket-loket tersebut dapat ditarik kesimpulan bahwak keempat loket yang diaktifkan tidak memenuhi standard keefektifan kerja dari loket tersebut dimana nilai minimum dari keefektifan kerja adalah di atas 70%. Namun setelah dilakukan proses simulasi kedua dimana hanya diaktifkan 2 loket dapat dilihat nilai dari Loket 1=71,63% dan Loket 2=76,19%, maka dapat ditarik kesimpulan bahwa kinerja 2 buah loket yang diaktifkan ternyata lebih efektif karena memiliki nilai utilitas lebih besar daripada nilai utilitas minimum (70%). Oleh sebab itu, jumlah loket yang dianggap paling efektif untuk diaktifkan adalah sebanyak 2 buah.

4.1.3 Implementasi Program

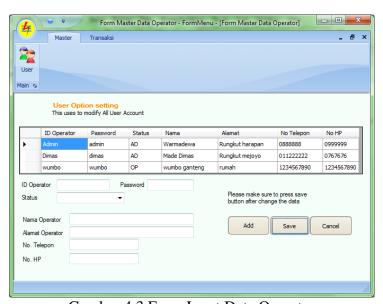
Setelah semua komponen komputer yang mendukung program simulasi pelayanan pelanggan terpasang, maka proses selanjutnya adalah implementasi program. Ketika aplikasi pertama kali dijalankan, akan tampil Form Login.


A. Form Login

Gambar 4.1 Form Login

Pada form ini, user akan diminta untuk menginputkan user id dan password untuk mengakses aplikasi simulasi pelayanan pelanggan.

B. Form Utama



Gambar 4.2 Form Utama

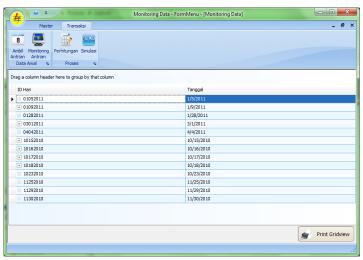
Pada Form Utama, user dapat memilih form yang akan ditampilkan.

Baik itu form ambil antrian, form monitoring antrian, form perhitungan data waktu antar kedatangan pelanggan, maupun menginputkan master data.

C. Form Input Data Operator

Gambar 4.3 Form Input Data Operator

Pada form input data operator ini, user dapat melakukan penginputan, dan update data operator yang akan mengakses aplikasi simulasi ini.


D. Form Ambil Antrian

Gambar 4.4 Form Ambil Antrian

Form ambil antrian dipergunakan untuk pengambilan karcis antrian pelanggan sekaligus untuk mencatat waktu kedatangan pelanggan.

E. Form Monitoring Data

Gambar 4.5 Form Monitoring Data

Pada form ini, user dapat melihat data kedatangan dan pelayanan pelanggan berdasarkan tanggal yang sudah disimpan pada database.

F. Form Persiapan data

Gambar 4.6 Form Persiapan data

Pada form ini, user dapat melakukan perhitungan Distribusi Frekuensi dari data waktu antar kedatangan pelanggan. Dimana juga akan keluar hasil dari nilai n, rata-rata n, standard deviasi, jumlah data class, dan interval antar data class.

G. Form Distribusi Normal

Gambar 4.7 Form Distribusi Normal

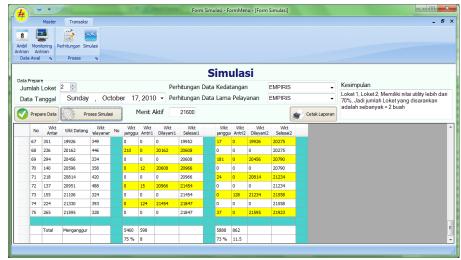
Pada form Distribusi Normal, user dapat melakukan perhitungan uji Distribusi Normal dari waktu antar kedatangan pelanggan.

Form Perhitungan Eksponensial - FormMenu - [Form Perhitungan Eksponensial] **Eksponensial** 1.718 17 October 2010 Jumlah Data Bil Napier Tanggal Rata rata 282 Distance Frequency Kesimpulan 117 **DITOLAK** Standard Deviasi Interval Class 56 223 0.07 224 280 252 0.57 0.38 0.19 281 337 10 309 0.7 0.45 0.25 F(x)-S(x) Terbesar 0.4 Karena 0.4 lebih besar dari 0.1521, Maka H0 ditolak Kesimpulan 0.1521 Nilai Perbandingan

H. Form Distribusi Eksponensial

Gambar 4.8 Form Distribusi Eksponensial

Pada form Distribusi Eksponensial, user dapat melakukan perhitungan uji Distribusi Eksponensial dari waktu antar kedatangan pelanggan.


I. Form Distribusi Empiris

Gambar 4.9 Form Distribusi Empiris

Apabila gagal melakukan uji Distribusi Normal dan Eksponensial, pada form ini user dapat melakukan perhitungan Distribusi Empiris.

J. Form Simulasi

Gambar 4.10 Form Simulasi

Pada form ini user dapat melakukan proses simulasi setelah melakukan proses uji distribusi dan pembangkitan data random berdistribusi. Pada form ini user juga dapat melihat kesimpulan yang dihasilkan dari proses simulasi yang sudah dilakukan.

K. Form Laporan Hasil Simulasi

4 Laporar	n Simulasi	-						×
: = M	4 1 of 4	⊢ (a)	2 3 1 1 1	₩ • 100%	₩	Find Next		
		ΙΔΕ	ORAN H	ASIL SIM	III AST			^
		LAI	OIGHI II	ASIL SIN	ULASI			-
LOKE	T: 1					Sunday, Oct	tober 17, 2010	
District SWID As a Kill Company								
Distribusi Waktu Antar Kedatangan : EMPIRIS								
Distribu	usi Waktu Lama Pe	layanan	: EMPIRIS					
No.	Waktu Antar Kedatangan	Waktu Datang	Lama Pelayanan	Lama Menganggur	Lama Mengantri	Waktu Dilayani	Waktu Selesai	E
1	120	120	311	120	0	120	431	
2	226	346	340	0	0	0	431	- 1
3	427	773	580	342	0	773	1353	1
4	122	895	388	0	0	0	1353	1
5	173	1068	337	0	0	0	1353	
6	427	1495	589	142	0	1495	2084	
7	494	1989	361	0	0	0	2084	
8	389	2378	409	294	0	2378	2787	
9	228	2606	327	0	0	0	2787	
10	334	2940	326	153	0	2940	3266	
11	193	3133	551	0	0	0	3266	
12	259	3392	447	126	0	3392	3839	
13	306	3698	329	0	0	0	3839	
14	335	4033	429	194	0	4033	4462	
15	126	4159	523	0	0	0	4462	
16	494	4653	317	191	0	4653	4970	
17	427	5080	493	110	0	0	0	-

Gambar 4.11 Form Laporan Hasil Simulasi

Pada form ini, user dapat melihat hasil dari proses simulasi yang berupa laporan. User juga dapat melakukan pencetakan hasil simulasi ini untuk diserahkan kepada pihak Manager.

4.2 Evaluasi dan Uji Coba

Tahapan evaluasi ini berguna untuk mengetahui apakah sistem berjalan sesuai dengan tujuan dari dibuatnya sistem ini yaitu mampu membantu *user* dalam melakukan pelayanan pelanggan. Adapun uji coba yang dilakukan bertujuan untuk mengetahui kekurangan dari sistem ini sehingga dapat dievaluasi.

4.2.1 Uji Coba Fitur Dasar Sistem

Uji coba fitur dasar sistem ini bertujuan untuk mengecek apakah semua fitur yang ada dalam aplikasi telah berjalan sesuai dengan fungsinya.

1. Uji Coba Fitur Login

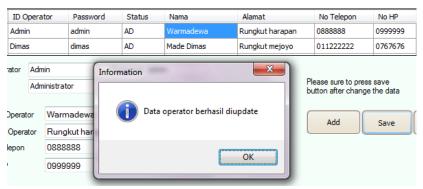
Proses login dilakukan dengan cara memasukkan *username* dan *password* dari operator.

Tabel 4.4 Evaluasi Hasil Uji Coba Fitur Login

	Tuoti III Evaluasi Hasii Oji Cooa i itai Eogii								
Test Case	Tuiuan	Input	Output Diharapkan	Output Program	Hasil				
1	username dan	Memasukkan data login username dan password yang salah	Muncul pesan warning, username not found.	Gambar 4.12	Sukses				

Gambar 4.12 Peringatan Username Dan Password Salah

2. Uji Coba Fitur Master Operator


Uji coba dilakukan dengan memasukkan data operator ke dalam field yang telah disediakan. Pengujian juga dilakukan dengan cara mengupdate data-data operator yang sudah ada.

Tabel 4.5 Evaluasi Hasil Uji Coba Fitur Master Operator

Test Case	l Tuinan	Input	Output Diharapkan	Output Program	Hasil
1	Menambah data operator	Menginputkan id operator, password, beserta data lainnya dan menekan tombol add	Muncul pesan data operator berhasil ditambahkan	Gambar 4.13	Sukses
2	Mengupdate data operator	Memilih data operator dan mengubahnya, kemudian menekan tombol save	Muncul pesan data operator berhasil diupdate	Gambar 4.14	Sukses

Gambar 4.13 Data Operator Berhasil Ditambahkan

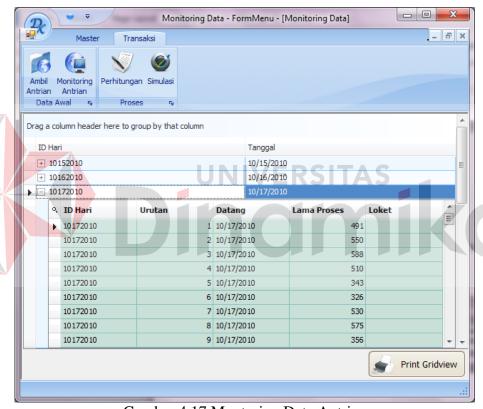
Gambar 4.14 Data Operator Berhasil Diupdate

3. Uji Coba Fitur Nomor Antrian

Uji coba dilakukan dengan menekan tombol antrian.

Test Case	1 Tunuan	Input	Output Diharapkan	Output Program	Hasil
1	, and the second	Menekan tombol ambil nomor antrian	Nomor antrian berubah	Gambar 4.15 Gambar 4.16	Sukses

Gambar 4.15 Antrian Nomor 1

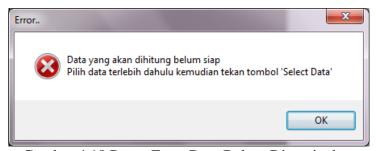

Gambar 4.16 Antrian Nomor 2

4. Uji Coba Fitur Monitoring Data Antrian

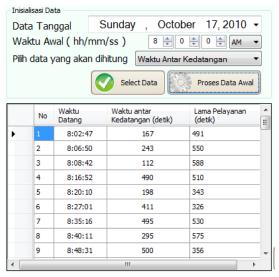
Uji coba dilakukan dengan memilih data kedatangan pelanggan yang telah tersedia pada tanggal tertentu.

Tabel 4.7 Evaluasi Hasil Uji Coba Fitur Monitoring Data Antrian

Test Case	Tujuan	Input	Output Diharapkan	Output Program	Hasil
1	lMelakukan	tanooal vano akan	Muncul data antrian pada tanggal yang dipilih	Gambar 4.17	Sukses

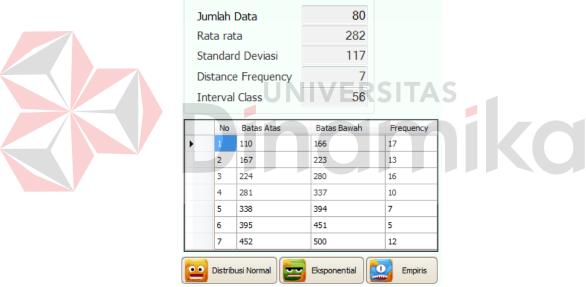

Gambar 4.17 Montoring Data Antrian

5. Uji Coba Fitur Distribusi Frekuensi

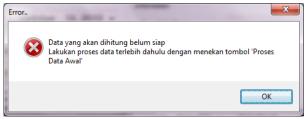

Uji coba dilakukan dengan menghitung data waktu antar kedatangan dan lama pelayanan pelanggan per tanggal yang dipilih.

Tabel 4.8 Evaluasi Hasil Uji Coba Fitur Distribusi Frekuensi

_	Tabel 4.8 Evaluasi Hasii Uji Coba Fitur Distribusi Frekuensi						
Test Case	Tujuan	Input	Output Diharapkan	Output Program	Hasil		
1	Menghitung distribusi frekuensi tanpa melakukan seleksi data	Tekan tombol proses data awal sebelum melakukan seleksi data	Muncul pesan eror, data yang akan dihitung belum siap	Gambar 4.18	Sukses		
2	Menyeleksi data antrian yang akan dihitung	Pilih data pada tanggal yang ditentukan, pilih data yang akan dihitung, kemudian klik tombol select data	Muncul data nomor antrian pelanggan, waktu kedatangan pelanggan, waktu antar kedatangan pelanggan, dan waktu lama pelayanan pelanggan	Gambar 4.19	Sukses		
3	Menghitung distribusi frekuensi data antrian	Menekan tombol proses data awal	Muncul jumlah data, rata-rata waktu antar kedatangan, standard deviasi, jumlah class, interval class, dan datagrid tabel distribusi frekuensi	Gambar 4.20	Sukses		
4	Menampilkan form distribusi normal, eksponensial, atau empiris sebelum proses distribusi frekuensi	Menekan tombol distribusi normal, eksponensial, atau empiris sebelum melakukan proses perhitungan distribusi frekuensi	Muncul pesan eror, data yang akan dihitung belum siap	Gambar 4.21	Sukses		



Gambar 4.18 Pesan Error Data Belum Dipersiapkan



Gambar 4.19 Data Pelanggan

Information

Gambar 4.20 Data Distribusi Frekuensi

Gambar 4.21 Pesan Error Belum Melakukan Proses Distribusi Frekuensi

6. Uji Coba Fitur Distribusi Normal

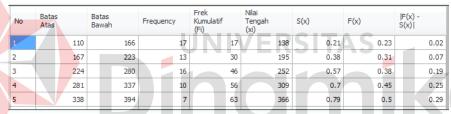
Uji coba dilakukan dengan menghitung hasil distribusi frekuensi dari data waktu antar kedatangan dan lama pelayanan pelanggan dengan mempergunakan uji distribusi normal.

Tabel 4.9 Evaluasi Hasil Uji Coba Fitur Distribusi Normal

Test Case	Tujuan	Input	Output Diharapkan	Output Program	Hasil
1	Menghitung distribusi normal	Menekan tombol hitung distribusi	Muncul datagrid tabel distribusi normal	Gambar 4.22	Sukses
2	lhilangan acak	Menekan tombol generate bilangan acak	Data bilangan acak berdistribusi normal muncul pada datagrid tabel acak normal	Gambar 4.23	Sukses

Gambar 4.22 Tabel Distribusi Normal

	Urut	Bil. Acak 1	Bil. Acak 2	Z	X
þ.	1	0.2346	0.6963	-1	351
	2	0.9315	0.1399	0	438
	3	0.1411	0.5074	0.9	516
	4	0.2306	0.5955	1.2	542
	5	0.0983	0.0138	-2.1	255
	6	0.846	0.1526	-0.6	386
	7	0.1064	0.2153	1.8	595
	8	0.7779	0.8114	0	438
	9	0.6965	0.9249	0	438
	10	0.495	0.7589	0.1	447
	11	0.0718	0.9232	-1.4	316
	12	0.7941	0.2145	0.7	499
	13	0.0291	0.4296	-1.7	290
	14	0.4095	0.7716	1.3	551
	15	0.3027	0.0375	1.2	542
	16	0.3414	0.4304	-1.2	334
	17	0.6272	0.3407	-0.1	429
	18	0.3241	0.7843	-0.6	386
	19	0.5337	0.1518	-1.1	342
	20	0.6232	0.2399	-1	351
	21	0.2254	0.2518	0.8	508


Gambar 4.23 Tabel Bilangan Acak Distribusi Normal

7. Uji Coba Fitur Distribusi Eksponensial

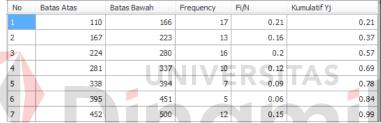
Uji coba dilakukan dengan menghitung hasil distribusi frekuensi dari data waktu antar kedatangan dan lama pelayanan pelanggan dengan mempergunakan uji distribusi eksponensial.

Tabel 4.10 Evaluasi Hasil Uji Coba Fitur Distribusi Eksponensial

	Tuber 1:10 Evarausi Hash Off Cood 1 Ital Distribusi Eksponensiai							
Test Case	Tujuan	Input	Output Diharapkan	Output Program	Hasil			
1	Menghitung distribusi eksponensial	Menekan tombol hitung distribusi	Muncul datagrid tabel distribusi eksponensial	Gambar 4.24	Sukses			
2	Menggenerate bilangan acak eksponensial	Menekan tombol generate bilangan acak	Data bilangan acak berdistribusi eksponensial muncul pada datagrid tabel acak eksponensial	Gambar 4.25	Sukses			

Gambar 4.24 Tabel Distribusi Eksponensial

Urut	Bil. Acak 1	X
1	0.0609	233
2	0.9781	308
3	0.7578	302
4	0.153	258
5	0.9674	308
6	0.7898	303
7	0.0569	232
8	0.2558	272
9	0.9247	307
10	0.918	307
11	0.6724	298
12	0.4094	285
13	0.9327	307
14	0.3626	282
15	0.6042	295
16	0.8793	306
17	0.5228	291
18	0.858	305


Gambar 4.25 Tabel Bilangan Acak Distribusi Eksponensial

8. Uji Coba Fitur Distribusi Empiris

Uji coba dilakukan dengan menghitung hasil distribusi frekuensi dari data waktu antar kedatangan dan lama pelayanan pelanggan dengan mempergunakan distribusi empiris.

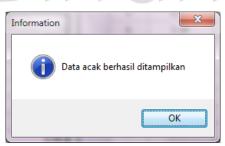
Tabel 4.11 Evaluasi Hasil Uji Coba Fitur Distribusi Empiris

Test Case	Tujuan	Input	Output Diharapkan	Output Program	Hasil
1	Menghitung distribusi empiris	Menekan tombol hitung distribusi	Muncul datagrid tabel distribusi empiris	Gambar 4.26	Sukses
2	Menggenerate bilangan acak empiris	Otomatis keluar setelah tombol hitung distribusi ditekan	Data bilangan acak berdistribusi empiris muncul pada datagrid tabel acak empiris	Gambar 4.27	Sukses

Gambar 4.26 Tabel Distribusi Empiris

Urut	Bil. Acak 1	X
1	0.4347	242
2	0.4419	244
3	0.1708	156
4	0.2497	181
5	0.7476	374
6	0.2537	182
7	0.4699	252
8	0.3524	217
9	0.7049	347
10	0.6475	317
11	0.0854	133
12	0.506	262
13	0.9786	496
14	0.8264	438
15	0.7517 376	
16	0.976	496

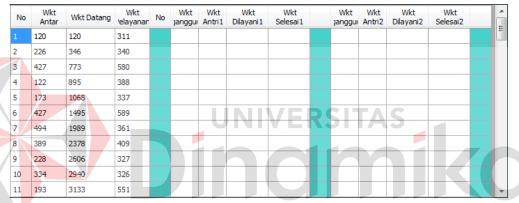
Gambar 4.27 Tabel Bilangan Acak Distribusi Empiris


Uji Coba Menyimpan Dan Menampilkan Data Acak Berdistribusi
 Uji coba dilakukan dengan menekan tombol save atau load pada masing-masing uji distribusi.

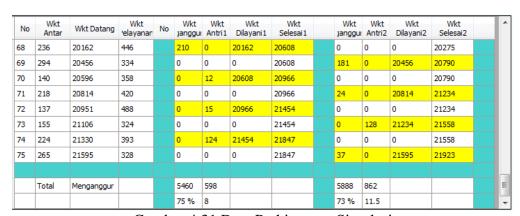
Tabel 4.12 Evaluasi Hasil Uji Coba Fitur Tombol Save Dan Load

Test Case	Tujuan	Input	Output Diharapkan	Output Program	Hasil
1	Menyimpan bilangan acak berdistribusi	Menekan tombol save	Data bilangan acak berdistribusi tersimpan ke dalam database	Gambar 4.28	Sukses
2	Memunculkan bilangan acak berdistribusi yang sudah tersimpan	Menekan tombol load	Data bilangan acak yang tersimpan muncul pada datagrid tabel distribusi	Gambar 4.29	Sukses

Gambar 4.28 Pesan Data Bilangan Acak Berhasil Tersimpan


Gambar 4.29 Pesan Data Bilangan Acak Berhasil Ditampilkan

10. Uji Coba Fitur Perhitungan Simulasi


Uji coba dilakukan dengan menghitung bilangan acak hasil distribusi data waktu antar kedatangan dan lama pelayanan pelanggan.

Tabel 4.13 Evaluasi Hasil Uji Coba Fitur Perhitungan Simulasi

Test Case	Tujuan	Input	Output Diharapkan	Output Program	Hasil
1	Mempersiapkan data dan jumlah loket yang akan disimulasikan	Menentukan jumlah loket yang akan disimulasikan, tanggal data yang akan di proses, dan kemudian tekan tombol prepare data		Gambar 4.30	Sukses
2	Melakukan proses perhitungan simulasi data	Menekan tombol proses simulasi setelah melakukan persiapan data	Muncul hasil perhitungan simulasi pada datagrid tabel simulasi dan kesimpulan	Gambar 4.31	Sukses

Gambar 4.30 Data Awal Simulasi

Gambar 4.31 Data Perhitungan Simulasi

4.2.2 Uji Coba Kemudahan Penggunaan Aplikasi

Aplikasi ini telah diujicobakan pada 10 user sebagai subjek studi kasus Tugas Akhir ini. Nilai yang diberikan untuk grade adalah sebagai berikut: Baik sekali bernilai 5, Baik bernilai 4, Cukup bernilai 3, Kurang bernilai 2, dan Kurang sekali bernilai 1. Hasil bernilai Baik sekali jika mempunyai nilai rata-rata antara 4,24 sampai dengan 5, bernilai Baik jika nilai rata-rata antara 3,43 sampai 4,23, bernilai Cukup jika nilai rata-rata berkisar antara 2,62 sampai 3,42, bernilai Kurang jika nilai rata-rata berkisar antara 1,81 sampai 2,61, dan bernilai Kurang sekali jika nilai rata-rata berkisar antara 1 sampai 1,8. Beberapa parameter yang dilakukan pengujian dan hasil pengujian dapat dilihat dari tabel 4.14.

Tabel 4.14 Hasil Pengisian Angket $Hasil = (Grade \times Jumlah)$ No. Objek Grade (nilai) Jumlah / Total Baik sekali (5) 2 Tampilan <mark>Ap</mark>likasi - tampilan Baik (4) 7 Hasil = (5x2) + (4x7) +overview, tampilan keseluruhan, Cukup (3) tampilan <mark>m</mark>enu, penempatan objek, (3x1) / 10 = 4,1Kurang (2) 0 pewarnaan, dsb. Kurang sekali (1) 0 Baik sekali (5) Ketepatan Perhitungan - perhitungan Baik (4) 8 Hasil = (5x1) + (4x8) +Frekuensi, Distribusi Normal, Cukup (3) 1 Distribusi Eksponensial, dan (3x1) / 10 = 4Kurang (2) 0 Distribusi Empiris. 0 Kurang sekali (1) Baik sekali (5) 0 8 Baik (4) Fungsi Halaman Aplikasi – fungsi Hasil = (4x8) + (3x2) /halaman apakah benar? Apakah Cukup (3) 2 10 = 3.8tepat? Apakah efektif? Kurang (2) 0 Kurang sekali (1) 0 Baik sekali (5) 3 Baik (4) 7 Hasil = (5x3) + (4x7) /Hasil Simulasi - hasil simulasi dengan Cukup (3) 0 metode Discrete-Event 10 = 4,30 Kurang (2) Kurang sekali (1) 0 Baik sekali (5) 1 Baik (4) 7 Rekomendasi Loket - apakah dapat Hasil = (5x1) + (4x7) +Cukup (3) 2 memberikan rekomendasi pengaktifan (3x2) / 10 = 3.9loket dengan tepat? 0 Kurang (2) Kurang sekali (1) 0 (4,1+4+3,8+4,3+3,9)Rata-rata

/5 = 4,02

Dari semua objek yang diberikan pada angket, dapat dilihat aplikasi bernilai Baik yaitu dengan rata-rata nilai 4,02. Dari hasil evaluasi yang telah dilakukan di atas, dapat diketahui bahwa aplikasi pelayanan pelanggan dengan metode *Discrete-Event* ini layak untuk diimplementasikan.

BAB V

PENUTUP

5.1 Kesimpulan

Setelah dilakukan analisis, perancangan, dan pembuatan Aplikasi Simulasi Pelayanan Pelanggan pada PT. PLN (PERSERO) cabang Surabaya dengan metode *discrete-event simulation*, maka dapat diambil kesimpulan sebagai berikut:

- Aplikasi Simulasi Pelayanan Pelanggan ini dapat digunakan untuk mengoptimalkan kinerja pelayanan pelanggan pada loket terhadap perusahaan
 PT. PLN (PERSERO) cabang Surabaya.
- 2. Dengan mempergunakan metode *Discrete-Event Simulation*, aplikasi simulasi yang penulis kembangkan mampu mengetahui rata-rata waktu antrian dari pelanggan, rata-rata waktu menganggur dari loket yang diaktifkan, lama pelayanan dari operator kepada pelanggan, dan persentase utilitas/kinerja dari masing-masing loket yang diaktifkan.
- 3. Aplikasi simulasi ini dapat menyimpulkan bahwa jumlah loket yang diaktifkan pada pelayanan pelanggan sebanyak 2 buah mendapatkan hasil kinerja yang sangat efisien yaitu dengan nilai utilitas diatas 70%, dibandingkan dengan pengaktifan 4 buah loket yang hanya menghasilkan nilai utilitas masing-masing kurang dari 60%.

5.2 Saran

Dari beberapa hal yang telah dilaksanakan dalam pengembangan program simulasi ini, maka diperoleh beberapa saran yang dapat diberikan. Saransaran tersebut adalah sebagai berikut:

- Di dalam penginputan data pelayanan pelanggan sebaiknya dibuat form yang berbeda atau form proses pelayanan pelanggan itu sendiri.
- 2. Untuk pengoptimalan di dalam pengujian data sebaiknya ditambahkan metode pengujian data lain seperti Distribusi Poisson.

DAFTAR PUSTAKA

- Banks, J. dan Carson, J. S. 1984. *Discrete-Event System Simulation*. New Jersey: Prentice-Hall.
- Gottfried, B.S. 1984. *Elements of Stochastic Process Simulation*. New Jersey: Prentice Hall Inc.
- Gould, Foyd Jerome. 1993. *Introductory Management Science*. New Jersey: Prentice-Hall Inc.
- Haryono. 1984. Metode Statistika. Surabaya: ITS Surabaya.
- Hartono, Jogiyanto. 1999. Analisis & Desain Sistem Informasi: Pendekatan Terstruktur. Yogyakarta: Andi Offset.
- Kendall E. Kenneth dan Kendall E. Julie. 1995. *Systems Analysis And Design*. New jersey: Prentice-Hall Inc.
- Law, Averill M. 1991. Simulation Modelling and Analysis. New York: McGraw-Hill Inc.
- Setiawan, S. 1991. Simulasi Teknik Pemrograman dan Metode Analisis. Yogyakarta: Andi Offset.
- Singarimbun. 1989. Metode Penelitian Survei. Jakarta: LP3ES.
- Sturges, H.A. 1926. *The Choice of a Class Interval*. United States of America: Journal of the American Statistical Association.
- Supranto, J. 2000. Teori dan Aplikasi. Jakarta: Airlangga.
- Sutanta, Edhy. 2004. Sistem Basis Data. Yogyakarta: Graha Ilmu.
- Utama, I Gede Arya. 2010. Simulasi dan Pemodelan. Surabaya: STIKOM Surabaya.
- Walpole, R.E. dan Myers, Raymond. H. 1995. *Ilmu Peluang dan Statistika untuk Insinyur dan Ilmuwan*. Bandung: ITB Bandung.