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Abstract— Signal processing for pathological heart sound 

signals can be considered as a fundamental part of the whole 

process in tele-auscultation systems. In this paper, we employ the 

CEEMD and the EEMD algorithm to decompose various 

pathological heart sound signals in the form of phonocardiograph 

(PCG) signals. Following the decomposition process, we 

subsequently extract murmurs from the targeted heart sound 

signals using our proposed technique that based on the Pearson 

distance metric. Performance analysis of the decomposition 

algorithms as well as the extraction method is evaluated in terms 

of delta SNR that signifies variance comparison of targeted signal 

before and after murmurs extraction. It can be concluded that in 

general pathological heart sound signals that have been 

decomposed by the CEEMD algorithm followed by the Pearson 

distance metric for murmurs extraction, provide the finest 

murmurs extraction than the EEMD. Additionally, the EEMD 

algorithm involves smaller number of modes to form the extracted 

murmurs signal as compared to the CEEMD algorithm. However, 

employing the CEEMD algorithm produces higher number of 

shifting procedures causing higher computational complexity than 

the EEMD algorithm.  

Keywords—phonocardiograph, heart sound, heart murmurs, 

empirical mode decomposition. 

I.  INTRODUCTION  

Based on the latest data released by the World Health 
Organization (WHO) in 2014, deaths caused by 
cardiovascular disease in 2012 has reached 17.5 million 
deaths, or 46% of the total number of non-communicable 
diseases deaths in the world [1]. In addition to that, in another 
WHO report states that in 2020, it is estimated that the coronary 
heart disease will be the major killer diseases in countries 
throughout Asia-Pacific [2]. Based on those facts, there can be 
seen urgent need for assisted technologies that will be able to 
counteract or at least to do early detection for the diseases. To 
anticipate terminal ill (that mostly leads to deaths) initiated by 
the cardiovascular diseases, some works have been proposed to 
utilize the so-called online observation and detection models. 
These are commonly termed as tele-auscultation systems [3-4]. 
The tele-auscultation systems proved to be useful specifically in 

the remote areas where the presence of cardiovascular experts 
are void. 

Recent studies show some promising results in the heart 
sounds signal processing by means of decomposing signal into 
a set of intrinsic mode functions (IMFs) using the Empirical 
Mode Decomposition (EMD) method proposed by Huang et al. 
in 1998 [5]. The advantages of analyzing heart sounds signals 
by IMFs have been shown, for example, in [6] to study signal 
recording that are often contaminated with spike noise produced 
by measurement instruments and in [7] where EMD was used to 
improve the spectrum estimates of heart rate variability. 
Furthermore, authors in [8] suggested the use of EMD for 
separating heart sounds signals and murmurs by extracting a 
multi-component signal into a set of mono-component signals, 
called the IMFs and then selecting the most appropriate IMFs to 
represent the undistorted heart sound signals. To overcome the 
scale separation problem in the EMD, therefore, a noise-assisted 
signal was introduced in [9]. The new method is called 
Ensemble Empirical Mode Decomposition (EEMD), which 
describes new IMF components as the mean of an ensemble of 
trials of signals, each consisting of the signal with addition of 
white noise series [10-11]. Advances in the study of EEMD 
development lead to a Complete Ensemble Empirical Mode 
Decomposition (CEEMD) that was argued to have significant 
improvement in terms of algorithm complexity reduction 
[12,13].  

In this paper, we will employ the CEEMD and the EEMD 
algorithms to decompose various pathological heart sound 
signals taken from University of Michigan and University of 
Washington databases in the form of phonocardiograph (PCG) 
signals. These PCG signals provide information about cardiac 
valve function producing murmurs signals. Following the 
decomposition process, we subsequently extract murmurs from 
the targeted heart sound signals using our proposed technique 
that based on the Pearson distance metric. Performance analysis 
of the decomposition algorithms as well as the extraction 
method is evaluated in terms of ∆SNR (delta SNR) that signifies 
variance comparison of measured signal before and after 
murmurs extraction. 
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The remaining of the paper is organized as follows: Section 
2 elaborates algorithms for signal decomposition that will be 
utilized in this paper. Sections 3 explains our proposed murmurs 
extraction scheme. Performance evaluation of murmurs 
extraction scheme for various pathological heart sound signals 
is presented in Section 4. Finally, conclusion will be drawn in 
the last section of this paper. 

II. EMPIRICAL MODE DECOMPOSITION AND ITS 

DEVELOPMENT 

The EMD is a method proposed by Huang et. al. [11] to 
perform a time-domain decomposition of an observed signal, 
����, into a set of Intrinsic Mode Functions (IMFs). According 
to the authors, a signal to be considered as an IMF must satisfy 
two basic conditions: (i) the whole length of an IMF should 
retain the number of extrema and number of zero-crossings 
either equal or differ at most by one, (ii) the mean value of the 
upper envelope defined by the local maxima and the lower 
envelope defined by the local minima is zero at any location. The 
algorithm for producing the �-empirical modes from ���� is 
called sifting process. As a result of decomposition process, an 
observed signal can be expressed as: 

���� = ∑ �	
���� + ��������          (1) 

where �	
���� is the �-th IMF, and ���� is the trend-like 
final residue. 

The EEMD was proposed in [15] to overcome the mode 
mixing problems occurring in the EMD method. In the EEMD, 
each of the �-th IMF component is considered as a mean of 
�	
� generated over an ensemble of trials of � numbers of the 
original signal plus white Gaussian noise series with finite 
variance. For convenience, here we define the original signal as 
�-sample heart sounds signal and denote as ������ =
�, �, ⋯ , �� obtained through process of recording an acoustic 
wave from a stethoscope. The signal is commonly called as 
phonocardiography (PCG) signal. Step-by-step of the EEMD 
algorithm can be described as follows: 

1. We add a white Gaussian noise series to heart sounds 

signal, ���� such that 

 

����� = ���� + ������. (2) 

 

The ������� = �, �, ⋯ , �� indicates � realizations of 

the zero mean unit variance white Gaussian noise 

series, while � is the controlled noise amplitude 

(noise standard deviation)[15]. 

2. Decompose the ����� using the EMD algorithm to 

yield the �	
�� ���, where � = �, �, ⋯ , � is the �-th 

mode and each residue is obtained as 

�� ��� = ���� ��� − �	
�� ���.           (3) 

3. Find the average of the �	
�� ��� to get the IMF 

component, �	
����������, according to 

�	
���������� = �
� ∑ �	
�� ������� .          (4) 

The key feature of the CEEMD that makes it more 
sophisticated than the EEMD is in terms of the residue 
generation. See Eq. (3). As can be seen in the above algorithm, 
each ����� in the EEMD is decomposed independently and 
hence the residue is obtained accordingly. In contrast to that, the 
CEEMD algorithm calculates a unique first residue as 

���� = ���� − �	
� ����,          (5) 

where �	
� ���� denotes the first decomposition mode of the 
CEEMD, it is derived the same way as in the EEMD. Following 
the generation of the first residue, a new ensemble of ���� with 
addition of white Gaussian noise series for � realizations is 
obtained. It is then continued with computation the first EMD 
mode of each element. By taking average of these first EMD 
modes, the �	
� ���� can be obtained. Then calculate the �-th 
residue for � = �, �, ⋯ , �, decompose the ���� and define the 
mode  �	
� � ����. This procedure is repeated until the obtained 
residue can no longer be decomposed. The repetition procedure 
is commonly known as shifting process, which is identified by 
�!"#$% signifying total number of shifting process of � modes. 

Having all of the modes generated by the CEEMD in hand, 
the observed signal can be expressed in terms of modes and 
residue as 

���� = ∑ �	
� ���� + ������� ,          (6) 

where the equation in itself features complete and exact 
reconstruction of the observed signal. 

III. MURMURS EXTRACTION SCHEME 

Fig. 1 depicts PCG signals for normal and abnormal heart 
sounds signals. The most fundamental heart sounds are the first 
and the second (S1 and S2, respectively) sounds shown in the 
top figure. The first heart sound, S1, associated with cardiac 
vibrations produced by the closure of mitral and tricuspid valves. 
On the other hand, the second heart sound, S2, related to cardiac 
vibrations produced by the closure of the aortic and pulmonic 
valves. The S1 and S2 components of normal heart sound signal 
are clearly seen in the first row plot of Fig. 1. It approximately 
spans for 0.8 seconds period for 1 cycle normal heart sounds. 

The two fundamental components of the heart sound signals 
that are perturbed by systolic murmurs are depicted on the 
bottom part of Fig. 1. These murmurs are produced by long 
vibrations that occur during systole period. These vibrations 
result from turbulent blood flow through a partially obstructed 
opening mitral or tricuspid valves that are found between the 
ventricular and the aortic chambers [14]. The presence of 
murmurs in the series of heart sounds can be an indication of 
abnormalities resided in the heart. 
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Advanced studies around murmurs characteristics show that 
murmurs are nonstationary in nature [15]. Murmurs’ pitch, or 
frequency varies from low-pitched to high-pitched. They also 
exhibit sudden frequency changes. Hence, murmurs extraction 
requires advanced methods and algorithms in order to produce a 
meaningful set of separated signals as a tool for cardiologist in 
interpreting the cardiac dysfunction. In this study, murmurs 
extraction will be devised into two main procedures, i.e., signal 
decomposition and murmurs extraction. 

PCG signals decomposition will be accomplished utilizing 
the most advanced CEEMD and the EEMD algorithms where 
original signals are decomposed into a set of IMFs. In most 
practical applications, the CEEMD generates noise-like series 
such as murmurs at lower subscription index of the IMFs, e.g. 
�	
� ����, �	
� ����, �	
� ����, while the rest of the IMFs (at 
higher subscription index) contain lower frequency of the 
original signal. In this way, the CEEMD algorithm distributes 
the frequency heart sound components across different IMFs. 

After the generation of IMFs using the CEEMD algorithm, 
an exact criterion is certainly needed to distinguish IMFs that 
contain murmurs from those that contain fundamental signals. 
For simplicity of the overall scheme, we proposed to employ 
Pearson’s correlation criteria to differentiate IMFs and to select 
them automatically for revealing either murmurs or fundamental 
signals content out of the original signals. The correlation 
criteria is defined as 

&� = '()*����,�	
�� ���+
,'()������.'()*�	
�� ���+

            (7) 

where ���� is the original heart sound signal and &� is the 

correlation coefficient that is associated with the  �	
� ����. It is 
clear from Eq. (6) that the correlation coefficient is retrieved 
from cross-correlation between original signals and the 

�	
� ����. Hence, the correlation coefficient, &�, represents 
degree of similarity between original signals and each of the �-

th �	
� . We further describe this degree of similarity in terms of 
Pearson distance that is written as 

/� = � − |&�| (8) 

The Pearson distance can be interpreted as follows: smaller 
value of Pearson distance signifies a close distance (close 

similarity) between the originals signals and the �-th �	
� , in 
contrast, the highest value of Pearson distance explains that the 
two series are totally different. 

Besides that, the Pearson distance, /�, in Eq. (7), is also 
expected to serve as a proper threshold for IMF modes 
separation. In this work,  /� ≥ 2. � for � = �, �, ⋯ �345 is 
applied as a threshold. �345 is the number of modes that is 
involved in the construction of the extracted murmurs. The main 

task of the algorithm is to select series of �	
� ����, which has 
Pearson distance larger than  2. � for � = �, �, ⋯ �345. Those 
modes denotes the murmurs signal while the rest of the modes 
are the fundamental heart sound signal. Therefore, final results 

are a group of �	
� ���� series that represents extracted murmurs 

(mostly are those with low subscription index, i.e. � = �, �, ..) 
and on the other hand a group of  �	
� ���� series that constructs 
fundamental heart sounds signals. Mathematically the two series 
can be written as follows: 

 

Fig. 1. PCG signal for the normal (above) and abnormal heart sounds with 

early systolic murmurs (bottom). 

 

Fig. 2. Pathological heart sounds and murmurs. (a)-(f) University of Michigan 

database, (g)-(j) University of Washington database. 
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6345��� = ∑ �	
� �����345���           (8) 

and 

678��� = ∑ �	
� ��������345 �           (9) 

where 6345 signifies the extracted murmurs and 678 denotes the 
separated fundamental heart sound signal. The variable �345 is 
selected in such a way that threshold criterion described above 
is fulfilled, i.e. /� ≥ 2. �. 

IV. PERFORMANCE EVALUATION 

In order to examine performance of our proposed scheme in 
extracting murmurs throughout the heart sound signals, we will 
apply the algorithms to 10 various heart sound signals that are 
perturbed by murmurs. The signals were taken from University 
of Michigan Department of Medicine and University of 
Washington Department of Medicine databases. Both are freely 
available on the Internet. The pathological heart sounds and 
murmurs are depicted in Fig. 2. Fig. 2 shows various 
pathological heart sound signals with fundamental components 
S1 and S2 as well as murmurs signal. 

In this study, performance of the algorithms are evaluated in 
terms of difference in variance of the targeted signal before and 
after murmurs extraction. This performance metric is denoted by ∆89: and is defined as [18]: 

∆89: = �2 ;(< =>?@A$(5A�
>?B$%A5� C.                          (10) 

where >?@A$(5A
�  is the variance of the heart sound signals before 

extraction, and >?B$%A5
�  is the variance of the heart sound 

signals after removal of the murmurs. 

For both decomposition algorithms, the CEEMD and the 
EEMD, we employ an ensemble size of � = �22 realizations of 
zero mean unit variance white Gaussian noise series with 
increment noise amplitude from � = 2. 2D to 2. E with a 2. 2D 
step. 

The ∆89:s as a function of � for each of heart sound signals 
are shown in Table 1. It is apparent that low ∆89:s can be 
achieved by setting the noise amplitude, � = 2. D for signal 
decomposition using the CEEMD algorithm. Similarly, for 
signal decomposition using the EEMD algorithm, small ∆89:s 
can be attained by setting � = 2. �. 

Let us now examine the usefulness of the ∆89: parameter 
in Eq. (10) for measuring performance of murmurs extraction 
method in this paper. Small ∆89: means close similarity 
between original signal and the extracted signal. For example, 
an extreme condition is ∆89: = 2, in this case it can be 
interpreted that the targeted heart sound signal is exactly the 
same as the extracted signal, hence in this case it is said that the 
algorithm fails to extract murmurs. Comparably, for ∆89: ≫
2, it signifies huge disparity between the >?@A$(5A

�  and the >?B$%A5
�  

implying the decomposition algorithms cause deformation of the 
original signal. 

TABLE 1. MURMURS EXTRACTION FOR VARIOUS HEART SOUND SIGNALS IN 

TERMS OF ∆89: AND NOISE AMPLITUDES, �. 

Heart sound signal 

∆89: (dB) 

CEEMD 
EEMD 

Holo-systolic murmurs, � = 2. D 0.0876 
0.0455 

Early-systolic murmurs, � =
2. D 

0.0725 
0.0091 

Mid-systolic murmurs,  

� = 2. D 
0.2043 

0.1446 

Late-systolic murmurs, � = 2. D 0.0497 
0.0245 

S3 and Holo-systolic murmurs, 

� = 2. D 
0.274 

0.1227 

S4 and Mid-systolic murmurs, 

� = 2. D 
0.088 

0.0506 

Early aortic stenosis murmurs, 

� = 2. � 
0.2718 

3.4387 

Late aortic stenosis murmurs, 

� = 2. � 
0.2521 

3.1271 

Benign murmurs, � = 2. � 0.2691 
2.5332 

Mitral Stenosis, � = 2. � 3.9827 
2.7106 

 

Therefore, both of those extreme cases are something that we 
have to avoid in the heart sound signal analysis. Our study 
showed that perfect murmurs extraction can be achieved by 
keeping ∆89: in the range of 2. 2GHI < ∆K9: < 2. GHI 
using both decomposition algorithms. It should be noted that in 
the designated range, the bigger value of ∆K9: is considered the 
better. It indicates that variance of the separated fundamental 
heart sound signal after murmurs extraction is smaller than that 
of signal with small ∆K9:. In other words, the signal contains 
less murmurs than the other. 

As a first example, we will decompose the Mid-systolic 
murmurs signal from University of Michigan database using the 
CEEMD for � = 2. D. It can be appreciated from Fig. 3 that 
decomposition using the CEEMD produces 14 levels of IMFs in 
which the first until the fifth modes represent higher frequency 
of the original signal. It clearly seen that lower frequency of the 
signal is enclosed in the sixth to the fourteenth modes. 
Concerning murmurs’ characteristics described above, we can 
interpret intuitively that the murmurs might be resided from the 
first to the fifth modes. This conclusion is confirmed by 
measuring the Pearson distance defined as in Eq. (7) and is 
plotted in the second row plot of Fig. 4. 

The separated fundamental heart sound signal as well as the 
extracted murmurs can be seen clearly in the third and the fourth 
row plot of Fig. 4. Based on the figure, it is clearly understood 
that the CEEMD algorithm combined with the Pearson distance 
method completely remove murmurs from the heart sounds 
signal. 

In the same way, a Mid-systolic murmurs signal 
decomposition and extraction was carried out using the EEMD 
algorithm. The noise amplitude, �, was set to 0.5 the same value 
that we used for the CEEMD algorithm. Decomposition of the 
Mid-systolic murmurs heart sound signal results in 14 levels of 
modes (the picture does not include in this paper). However, we 
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can see from the second row plot of Fig. 5 that the Pearson 
distance decreases to a value that is smaller than  /� = 2. � at 
the fourth mode (/G = 2. 2E�), implying that murmurs might 
be conceived by the first, the second and the third modes. Hence, �345 = �. According to Eq. (8), the outcome of summing up 
the first three levels of modes is the extracted murmurs, 6345���, showed in the last row plot of Fig. 5. On the other 
hand, aggregating the fourth until the fourteenth row plot of the 
figure gives us the separated fundamental heart sound signal, 678���, as seen in the third row plot of Fig. 5. 

In our simulation, combination of the EEMD algorithm for 
signal decomposition and Pearson distance method for murmurs 
extraction gives ∆89: = 2. �GDdB, lower than that of the 
∆89: provided by the CEEMD algorithm. In this case, lower 
∆89: implies some murmurs cannot be removed perfectly by 
the EEMD algorithm. See the third row of Fig. 6 and compare 
with the third row of Fig. 5. It is obvious that the separated 
fundamental heart sound signal in Fig. 5 is smeared by the 
murmurs. Using the two Fig.s, we can observe visually that the 
CEEMD algorithm outperforms the EEMD algorithm. 

As a second example, we present murmurs extraction of the 
Early Aortic Stenosis signal from the University of Washington 
database. Signal decomposition is done by employing both the 
CEEMD and the EEMD algorithms with noise amplitude, � =
2. �. After finalizing iterations, the CEEMD decomposes the 
targeted signal into 14 levels of modes, while the EEMD 
decomposes it in 13 levels of modes. As a result of 
reconstruction process utilizing the Pearson distance criteria, 
signal that was decomposed by CEEMD algorithm produces ∆89: = 2. �L�dB.  

In Fig. 6, evolution of the Pearson distance against the �-th 

�	
�  shows the threshold of the Pearson distance that we used 
i.e., /� ≥ 2. � is surpassed for the first time at the sixth mode, /M = 2. 2MD. Hence, �345 = D. This means to say that the sixth 
mode is not the murmurs signal. Therefore, we can observe that 
the murmurs can be reproduced by adding the first until the fifth 
modes of the decomposed signals resulting in 6345��� as it was 
defined in Eq. (8), meanwhile, summing up together the sixth 
until the fourteenth mode resulting in fundamental heart sound 
signal, 678���, as it was defined in Eq. (9). Utilization of the 
CEEMD algorithm for signal decomposition and the Pearson 
distance method for murmurs extraction can achieve ∆89: =
2. �2G. 

As a summary, pathological heart sound signals that have 
been decomposed by the CEEMD algorithm provide the finest 
murmurs extraction than the EEMD. The only peculiarity is 
occurred at extraction of the Mitral Stenosis heart sound signal 
where for both decomposition schemes cannot produce proper 
murmurs removal. This is mainly because amplitude of the 
murmurs signal is as high as or even higher than the S1 and S2 
components of fundamental heart sound signal. See Fig. 2(j). In 
this case, the algorithms cannot differentiate between the 
murmurs and the S1 and S2 components properly. 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Decomposition of the Mid-systolic murmurs signal using the CEEMD 

algorithm for � = 2. D. 

 

Fig. 4. Mid-systolic murmurs signal, Pearson distance, separated fundamental 

heart sound signal and extracted murmurs from the CEEMD for � = 2. D, 

∆89: = 2. �2GdB. 

 

 

Fig. 5. Mid-systolic murmurs signal, Pearson distance, separated fundamental 

heart sound signal and extracted murmur from the EEMD for � = 2. D, 

∆89: = 2. �GDdB. 
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Fig. 6. Early Aortic Stenosis murmurs signal, Pearson distance, separated 

fundamental heart sound signal and extracted murmurs from the CEEMD for 

� = 2. �, ∆89: = 2. �L�dB. 

Besides the ∆89:, particular attention should also be put on 
the number of modes involved in the construction of the 
extracted murmurs. Our studies show that for the same value of �, the decomposition using the EEMD algorithm involves 
smaller number of modes to form the extracted murmurs signal 
as compared to the CEEMD algorithm. In other words, �NOP of 
the EEMD decomposition is smaller than the �NOP that is 
generated from the CEEMD decomposition. This conclusion is 
applied to all targeted heart sound signals in our experiment. 
This is an indication that the EEMD can only decompose high 
frequency part of the heart sound signals into smaller number of 
modes, while the CEEMD efficiently decompose the high 
frequency component into higher number of modes resulting in 
more detail and precise construction of the murmurs signals. 

The last observation considers the number of total shifting 
procedures generated by the two algorithms in the study. It can 
be shown that for various heart sound signals and noise 
amplitudes, the CEEMD algorithm produces higher number of 
shifting procedures than the EEMD algorithm. Higher number 
of shifting procedures directly implies the number of 
computation needed by the algorithm. This can be considered as 
the only drawback in employing the CEEMD algorithm for the 
purpose of murmurs extraction. However, in the case where 
quality of murmurs extraction becomes a priority and 
computation complexity can be sacrificed (considering the 
advance of computation speed today), the CEEMD algorithm 
will be a reasonable choice for signal decomposition and 
murmurs extraction from the pathological heart sound signals. 

V. CONCLUSIONS 

In this study, murmurs extraction from various heart sound 
signals has been carried out. The murmurs extraction procedure 
can be partitioned into two main processes, i.e., signal 
decomposition and murmurs extraction. It can be concluded that 
in general pathological heart sound signals that have been 
decomposed by the CEEMD algorithm followed by the Pearson 
distance metric for murmurs extraction, provide the finest 
murmurs extraction than the EEMD. Performance evaluation 
was done by employing the ∆89: metric. Additionally, the 

EEMD algorithm involves smaller number of modes to form the 
extracted murmurs signal as compared to the CEEMD 
algorithm. As a result, the CEEMD algorithm was able to 
decompose the high frequency component into higher number 
of modes resulting in more detail and precise construction of the 
murmurs signals. However, employing the CEEMD algorithm 
produces higher number of shifting procedures causing higher 
computational complexity than the EEMD algorithm. 
Nevertheless, considering the advance of computation speed 
today, the CEEMD algorithm will be a reasonable choice for 
signal decomposition and murmurs extraction. 
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