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Abstract— ggna] processing for pathological heart sound
signals can be considered as a fundamental part of the whole
process in tele-auscultation systems. In this paper, we employ the
CEEMD and the EEMD algRithm to decompose various
pathological heart sound signals in the form of phonocardiograph
(PCG) signals. Following the decomposition process, we
subsequently extract murmurs from the targeted heart sound
signals using our proposed technique that based on the Pearson
distance metric. Performance analysis of the decomposition
algorithms as well as the extraction method is evaluated in terms
of delta SNR that signifies variance coaparison of targeted signal
before and after murmurs extraction. It can be concluded that in
general pathological heart sound signals that have been
decomposed by the CEEMD algorithm followed by the Pearson
distance metric for murmurs extraction, provide the finest
murmurs extraction than the EEMD. Additionally, the EEMD
algorithm involves smaller number of modes to form the extracted
murmurs signal as compared to the CEEMD algorithm. However,
employing the CEEMD algorithm produces higher number of
shifting procedures causing higher computational complexity than
the EEMD algorithm.

Keywords—phonocardiograph, heart sound, heart murmurs,
empirical mode decomposition.

L INTRODUCTION

1

Based on the latest data released by the World Health
Organization (WHO) in 2014, deaths caused by
cardiovascular disease in 2012 has reached 17.5 million
deaths, or 46% of the total number of non-communicable
diseases deaths in the world [1]. In addition to that, in another
WHO report states that in 2020, it is estimated that the coronary
heart disease will be the major killer diseases in countries
throughout Asia-Pacific [2]. Based on those facts, there can be
seen urgent need for assisted technologies that will be able to
counteract or at least to do early detection for the diseases. To
anticipate terminal ill (that mostly leads to denm) initiated by
the cardiovascular diseases, some works have been proposed to
utilize the so-called online observation and detection models.
These are commonly termed as tele-auscultation systems [3-
The tele-auscultation systems proved to be useful specifically in
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the remote areas where the presence of cardiovascular experts
are void.

Recent studies show some promising results ilme heart
sounds signal processing by means of decomposing signal into
a set of intrinsic mode func s (IMFs) using the Empirical
Mode Decomposition (EMD) method proposed by Huang et al.
in 1998 [5]. The advantages of analyzing heart sounds signals
by IMFs have been shown, for example, in [6] to study signal
recording that are often contaminated with spike noise pmduc
by measurement instruments and in [7] where EMD was used to
improve the spectrum estimates of heart rate variability.
Furthermore, authors in [8] suggested the use of EMD f(m
separating heart sounds signals and murmurs by extracting a
multi-component signal into a set of mono-component signals,
called the IMFs and then selecting the most ap?:)riate IMFs to
represent the undistorted heart sound signals. To overcome the
scale separation problem in the EMD, t&f8fore, a noise-assisted
signal was introduced in [9]. The new method is called
Ensemble Er ‘al Mode Decomposition (EEMD), which
describes new IMF components as the mean of an ensemble of
trials of signals, each consisting of the signal with addition of
white noise series [1], Advances in the study of EEMD
development lead to a Complete Ensemble Empirical Mode
Decomposition (CEEMD) that was argued to have significant
improvement in terms of algorithm complexity reduction

[1243].

n this paper, we will employ the CEEMD and the EEMD
algorithms to decompose various pathological heart sound
signals taken from UnRersity of Michigan and University of
Washington databases 1n the form of phonocardiograph (PCG)
signals. These PCG signals provide information about cardiac
valve function producing murmurs signals. Following the
decomposition process, we subsequently extract murmurs from
the targeted heart sound signals using our proposed technique
that based on the Pearson distance metric. Performance analysis
of the decomposition algorithms as well as the extraction
method is evaluated in terms of ASNR (delta SNR) that signifies
variance comparison of measured signal before and after
murmurs extraction.




1

The gmaining of the paper is organized as follows: Section
2 elaborates algorithms for signal decomposition that will be
utilized in this paper. Sections 3 explains our proposed murmurs
extraction scheme. Performance evaluation of murmurs
cxncli(m scheme for various pathological heart sound signals
is presented in Section 4. Finally, conclusion will be drawn in
the last section of this paper.

IL. QPIRICAL MODE DECOMPOSITION AND ITS
DEVELOPMENT
The EMD is a method proposed by Huang et. al. a] to

perform a time-domain decomposition of an observed signal,
x(t). into a set of Intrinsic Mode FuuclionBIMFs) According
to the authors, a signal to be considered as an IMF must satisfy
two basic nditions: (i) the whole length of an IMF should
retain the number of extrema and number of zero-crossings
either equal or differ at most by one. (ii) the mean value of the
upper envelope defined by the local maxima and the lower
envelope defined by the local minima is zero at any location. The
algorithm for producing the I-empirical modes from x(t) is
called sifting plss, As a result of decomposition process, an
observed signal can be expressed as:

x(t) = Zf_y IMF, () + R (1) (1

where IMF(t) is the k-th IMF, and R (t) is the trend-like

final residue.

The EEMD was proposed in [15] to overcome the mode
mixing problems occurring in the EMD method. In the EEMD,
each of the k-th [Ml’aomponent is considered as a mean of
IMF,, generated over an ensemble of trials of I numbers of the
original signal plus white Gaussian noise series with finite
variance. For convenience, here we define the original signal as
N-sample it sounds signal and denote as x[n](n =
1,2,--,N) obtained through process of recording an acoustic
wave from a stethoscope. The signal is commonly cz as
phonocardiography (PCG) signal. Step-by-step of the EEMD
algorithm can be described as follows:

1. We add a white Gaussian noise series to heart sounds
signal, x[n] such that

xi[n] = x[n] + pwi[n]. (2)

The wi[n|(i =1,2,-,I) indicates I realizations of
the zero mean unit variance white Gaussian noise
series, while B is the controlled noise amplitude
(noise standard deviation)[15].

2. Decompose the x'[n] using the EMD algorithm to
yield the IMFL[n], where k = 1,2,--, K is the k-th
mode and each residue is obtained as

Ri[n] = Ri_,[n] — IMF[n]. (3

3. Find the average of the IMFL[n] to get the IMF
component, IMF[n], according to

IMF,[n] = 3L IMFinl. ()

The key feature of the CEEMD that makes it more
sophisticated than the EEMD is in terms of the residue
generation. See Eq. (3). As can be seen in the above algorithm,
each x{[n] in the EEMD is decomposed independently and
hence the residue is obtained accordingly. In contrast to that, the
CEEMD algorithm calculates a unique first residue as

R,[n] = x[n] — IMF,[n], (5)

where IMF;[n] denotes the first decomposition mode of the
CEEMD, it is derived the same way as in the EEMD. Follom;
the generation of the first residue, a new ensemble of R, [n] with
addition of white Gaussian noise series for [ lizations is
obtained. It is then continued with computation the first EMD
mode of each element. By taking average of these first EMD
modes, the TMF;[n] can be obtained. Then calculate the k-th
residue for k = 2,3, ---, K, decompose the Rk and define the
mode IMF ., [n]. This procedure is repeated until the obtained
residue can no longer be decomposed. The repetition procedure
is commonly known as shifting process, which is identified by
N g,ife signifying total number of shifting process of K modes.

Having all of the modes generated by the CEEMD in hand,
the observed signal can be expressed in terms of modes and
residue as

x[n] = T¥_, IMF,[n] + R[n], (6)

where the equation in itself features complete and exact
reconstruction of the observed signal.

. MURMURS EXTRACTION SCHEME

Fig. 1 depicts PCG signals for normal and abnormal heart
sounds signals. The most fundamental heart sounds are the first
and the second and S2, respectively) sounds shown in the
top figure. The first hear und, S1, associated with cardiac
vibrations produced by the closure of mitral and tricuspid valves.

the other hand. the second heant sound, S2, related to cardiac
vibrations uced by the closure of the aortic and pulmonic
valves. Thy and 52 components of normal heart sound signal
are clearly seen in the first row plot of Fig. 1. It approximately
spans for 0.8 seconds period for 1 cycle normal heart sounds.

The two fundamental components of the heart sound signals
that are perturbed by systolic murmurs are depicted on the
bottom part of Fig. 1. These murmurs are produced by long
vibrations that occur during systole period. These vibrations
result from turbulent blood flow through a partially obstructed
opening mitral or tricuspid valves that are found between the
ventricular and the aortic chambers [14]. The presence of
murmurs in the series of heart sounds can be an indication of
abnormalities resided in the heart.
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Advanced studies around murmurs characteristics show that
murmurs are nonstationary in nature [15]. Murmurs® pitch, or
frequency varies from low-pitched to high-pitched. They also
exhibit sudden frequency changes. Hence, murmurs extraction
requires advanced methods and algorithms in order to produce a
meaningful set of separated signals as a tool for cardiologist in
interpreting the cardiac dysfunction. In this study, murmurs
extraction will be devised into two main procedures, i.e., signal
decomposition and murmurs extraction.

PCG signals decomposition will be accomplished utilizing
the mos@vanccd CEEMD and the EEMD algorithms where
original signals are decomposed into a set of IMFs. In most
practical applications, the CEEMD generates noise-like series
such as murmurs at lower subscription index of the IMFs, e.g.
IMF,[n]. IMF,[n]. IMF4[n]. while the rest of the IMFs (at
higher subscription index) contain lower frequency of the
original signal. In this way, the CEEMD algorithm distributes
the frequency heart sound components across different IMFs.

After the generation of IMFs using the CEEMD algorithm,
an exact criterion is certainly needed to distinguish IMFs that
contain murmurs from those that contain fundamental signals.
For simplicity of the overall scheme, we proposed to employ
Pearson’s correlation criteria to differentiate IMFs and to select
them automatically for revealing either murmurs or fundamental
signals content out of the original signals. The correlation
criteria is defined as

dk — cnv(x[n].lm}(ln%] (-”
Vlm\r[xlnj).cnv(!mklnj]

where x[n] is the original heart sound signal and d is the
correlation coefficient that is associated with the ﬁ'ﬁ-‘k [m]. Itis
clear from Eq. (6) that the comelation coefficient is retrieved
from cross-correlation between original signals and the
IMF,[n]. Hence, the correlation coefficient, d,, represents
degree of similarity between original signals and each of the k-
th IMF. We further describe this degree of similarity in terms of
Pearson distance that is written as

Pi=1—|d;l (3)

The Pearson distance can be interpreted as follows: smaller
value of Pearson distance signifies a close distance (close
similarity) between the originals signals and the k-th TMF, in
contrast, the highest value of Pearson distance explains that the
two series are totally different.

Besides that, the Pearson distance, p,. in Eq. (7). is also
expected to serve as a proper threshold for IMF modes
separation. In this work, p, = 0.2 for k=1,2,-- K,;,,, is
applied as a threshold. K, is the number of modes that is
involved in the construction of the extracted murmurs. The main
task of the algorithm is to select series of ﬁ'ﬁ?k [n], which has
Pearson distance larger than 0.2 for k = 1,2, -+ Ky Those
modes denotes the murmurs signal while the rest of the modes
are the fundamental heart sound signal. Therefore, final results
are a group of IMF ,[n] series that represents extracted murmurs

(mostly are those with low subscription index, ie. k=1,2,.)
and on the other hand a group of IMF [n] series that constructs
fundamental heart sounds signals. Mathematically the two series
can be written as follows:
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Fig. I. PCG signal for the normal (above) and abnormal heart sounds with
early systolic murnurs (bottom).
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Fig. 2. Pathologicalheant sounds and murmurs. (a)-(f) University of Michigan
database, (g)-(j) University of Washington database.
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Yiur [n] = T IMF 1] (8)

and

Yesln] = Xf g, 1 IMF[n] (9

where Y, signifies the extracted murmurs and ¥ g denotes the
separated fundamental heart sound signal. The variable K, is
selected in such a way that threshold criterion described above
is fulfilled, i.e. p, = 0. 2.
IV. PERFORMANCE EVALUATION

In order to examine performance of our proposed scheme in
extracting murmurs throughout the heart sound signals, we will
apply the algorithms to 10 various heart sound signals that are
perturbed by murmurs. The signals were taken from University
of Michigan Department of Medicine and University of
Washington Department of Medicine databases. Both are freely
available on the Internet. The pathological heart sounds and
murmurs are depicted in Fig. 2. Fig. 2 shows various
pathological heart sound signals with fundamental components
S1 and S2 as well as murmurs signal.

n this study, performance of the algorithms are evaluated in
terms of difference in variance of the targeted signal before and
after murmurs extraction. This performance metric is denoted by
ASNR and is defined as [18]:

o

ASNR = 10 log(%). (10)
“after

where a2, is the varifffiie of the heart sound signals before

extraction, and aﬁmr is the variance of the heart sound

signals after removal of the murmurs.

For both decomposition algorithms, the CEn/ID and the
EEMD, we employ an ensemble size of I = 100 realizations of
zero mean unit variance white Gaussian noise series with
increment noise amplitude from # = 0.05 to 0.8 with a 0.05
step.

The ASNRs as a function of 8 for each of heart sound signals
are shown in Table 1. It is apparent that low ASNRs can be
achieved by setting the noise amplitude, § = 0.5 for signal
decomposition using the CEEMD algorithm. Similarly, for
signal decomposition using the EEMD algorithm, small ASNRs
can be attained by setting # = 0.1.

Let us now examine the usefulness of the ASNR parameter
in Eq. (10) for measuring performance of murmurs extraction
method in this paper. Small ASNR means close similarity
between original signal and the extracted signal. For example,
an extreme condition is ASNR = 0, in this case it can be
interpreted that the targeted heart sound signal is exactly the
same as the extracted signal, hence in this case it is said that the
algorithm fails to extract murmurs. Comparably, for ASNR >
0, it signifies huge disparity between the aﬁbﬂm and the aﬁa,m
implying the decomposition algorithms cause deformation of the
original signal.

TABLE | . MURMURS EXTRACTION FOR VARIOUS HEART SOUND SIGNALS IN
TERMS OF ASNR AND NOISE AMPLITUDES, f3.

ASNR (dB)
Heart sound signal —

CEEMD EEMD
Holo-systolic murmurs, § = 0.5 0.0876 0-0455
Early-systolic murmurs, f = 0.0725 0.0001
0.5
Mid-systolic murmurs, 0.1446
F=05 0.2043
Late-systolic murmurs, g = 0.5 0.0497 0.0245
83 and Holo-systolic murmurs, 0.274 0.1227
B=05
S4 and Mid-systolic murmurs, 0.088 0.0506
B=05
Early aortic stenosis murmurs, 0.2718 3.4387
F=01
Late aortic stenosis murmurs, 0.2521 3.1271
B=01
Benign murmurs, f = 0.1 0.2601 25332
Mitral Stenosis, # = 0.1 3.9827 2.7106

Therefore, both of those extreme cases are something that we
have to avoid in the heart sound signal analysis. Our study
showed that perfect murmurs extraction can be achieved by
keeping ASNR in the range of 0.04dB < ASNR < 0.4dB
using both decomposition algorithms. It should be noted that in
the designated range, the bigger value of ASNR is considered the
better. It indicates that variance of the separated fundamental
heart sound signal after murmurs extraction i1s smaller than that
of signal with small ASNR. In other words, the signal contains
less murmurs than the other.

As a first example, we will decompose the Mid-systolic
murmurs signal from University of Michigan database using the
CEEMD for # = 0.5. It can be appreciated from Fig. 3 that
decomposition using the CEEMD produces 14 levels of IMFs in
which the first until the fifth modes represent higher frequency
of the original signal. It clearly seen that lower frequency of the
signal is enclosed in the sixth to the fourteenth modes.
Concerning murmurs’ characteristics described above, we can
interpret intuitively that the murmurs might be resided from the
first to the fifth modes. This conclusion is confirmed by
mcasur the Pearson distance defined as in Eq. (7) and is
plotted in the second row plot of Fig. 4.

The separated fundamental heart sound signal as well as the
extracted murmurs can be seen clearly in the third and the fourth
rownot of Fig. 4. Based on the figure, it is clearly understood
that the CEEMD algorithm combined with the Pearson distance
method completely remove murmurs from the heart sounds
signal.

In the same way, a Mid-systolic murmurs signal
decomposition and extraction was carried out using the EEMD
algorithm. The noise amplitude, B, was set to 0.5 the same value
that we used for the CEEMD algorithm. Decomposition of the
Mid-systolic murmurs heart sound signal results in 14 levels of
modes (the picture does not include in this paper). However, we
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can see from the second row plot of Fig. 5 that the Pearson
distance decreases to a value that is smaller than p, = 0.2 at
the fourth mode (p4 = 0.081), implying that murmurs might
be conceived by the first, the second and the third modes. Hence,
K o = 3. According to Eq. (8), the outcome of summing up
the first three levels of modes is the extracted murmurs,
¥ o], showed in the last row plot of Fig. 5. On the other
hand, aggregating the fourth until the fourteenth row plot of the
figure s us the separated fundamental heart sound signal,
Yg[n]. as seen in the third row plot of Fig. 5.

In our simulation, combination of the EEMD algorithm for
signal decomposition and Pearson distance method for murmurs
extraction gives ASNR = 0.145dB, lower than that of the
ASNR provided by the CEEMD algorithm. In this case, lower
ASNR implies some murmurs cannot be removed perfectly by
the EEMD algorithm. See the third row of Fig. 6 and compare
with the third row of Fig. 5. It is obvious that the separated
fundamental heart sound signal in Fig. 5 is smeared by the
murmurs. Using the two Fig.s, we can observe visually that the
CEEMD algorithm outperforms the EEMD algorithm.

As a second example, we present murmurs extraction of the
Early Aortic Stenosis signal from the University of Washington
database. Signal decomposition is done by employing both the
CEEMD and the EEMD algorithms with noise amplitude, § =
0.1. After finalizing iterations, the CEEMD decomposes the
targeted signal into 14 levels of modes, while the EEMD
decomposes it in 13 levels of modes. As a result of
reconstruction process utilizing the Pearson distance criteria,
signal that was decomposed by CEEMD algorithm produces
ASNR = 0.272dB.

In Fig. 6, evolution of the Pearson distance against the k-th
IMF shows the threshold of the Pearson distance that we used
ie., pr = 0.2 is surpassed for the first time at the sixth mode,
Pe = 0.065. Hence, K, = 5. This means to say that the sixth
mode is not the murmurs signal. Therefore, we can observe that
the murmurs can be reproduced by adding the first until the fifth
modes of the decomposed signals resulting in ¥ . [1] as it was
defined in Eq. (8), meanwhile, summing up together the sixth
until the fourteenth mode resulting in fundamental heart sound
signal, ¥gg[n], as it was defined in Eq. (9). Utilization of the
CEEMD algorithm for signal decomposition and the Pearson
distance method for murmurs extraction can achieve ASNR =
0.204.

As a summary, pathological heart sound signals that have
been decomposed by the CEEMD algorithm provide the finest
murmurs extraction than the EEMD. The only peculiarity is
occurred at extraction of the Mitral Stenosis heart sound signal
where for both decomposition schemes cannot produce proper
murmurs removal. This is mainly because amplitude of the
murmurs signal is as high as or even higher than the S1 and 52
components of fundamental heart sound signal. See Fig. 2(j). In
this case, the algorithms cannot differentiate between the
murmurs and the S1 and S2 components properly.
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Besides the ASNR, particular attention should also be put on
the number of modes involved in the construction of the
extracted murmurs. Our studies show that for the same value of
B. the decomposition using the EEMD algorithm involves
smaller number of modes to form the extracted murmurs signal
as compared to the CEEMD algorithm. In other words, K, of
the EEMD decomposition is smaller than the K, that is
generated from the CEEMD decomposition. This conclusion is
applied to all targeted heart sound signals in our experiment.
This is an indication that the EEMD can only decompose high
frequency part of the heart sound signals ipsmaller number of
modes, while the CEEMD efficiently decompose the high
frequency component into higher number of modes resulting in
more detail and precise construction of the murmurs signals.

The last observation considers the number of total shifting
procedures generated by the two algorithms in the study. It can
be shown that for various heart sound signals and noise
amplitudes, the CEEMD algorithm produces higher number of
shifting procedures than the EEMD algorithm. Higher number
of shifting procedures directly implies the number of
computation needed by the algorithm. This can be considered as
the only drawback in employing the CEEMD algorithm for the
purpose of murmurs extraction. However, in the case where
quality of murmurs extraction becomes a priority and
computation complexity can be sacrificed (considering the
advance of computation speed today), the CEEMD algorithm
will be a reasonable choice for signal decomposition and
murmurs extraction from the pathological heart sound signals.

V. CONCLUSIONS

In this study, murmurs extraction from various heart sound
1als has been carried out. The murmurs extraction procedure
can be partitioned into two main Fucesses, ie., signal
decomposition and murmurs extraction. It can be concluded that
in general pathological heart sound signals that have been
decomposed by the CEEMD algorithm followed by the Pearson
distance metric for murmurs extraction, provide the finest
murmurs extraction than the EEMD. Performance evaluation
was done by employing the ASNR metric. Additionally, the
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EEMD algorithm involves smaller number of modes to form the
extracted murmurs signal as compared to the CEE
algorithm. As a result, the CEEMD algorithm was able to
decompose the high frequency component into higher number
of modes resulting in more detail and precise construction of the
murmurs signals. However, employing the CEEMD algorithm
produces higher number of shifting procedures causing higher
computational complexity than the EEMD algorithm.
Nevertheless, considering the advance of computation speed
today, the CEEMD algorithm will be a reasonable choice for
signal decomposition and murmurs extraction.
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