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ABSTRACT 

In this paper, we consider statistical characteristics of real User Datagram Protocol (UDP) traffic. Four 

main issues in the study include(i) the presence of long rangedependence (LRD) in the UDP traffic,(ii) the 

marginal distribution of the UDP traces,(iii) dependence structure of wavelet coefficients,(iv) and 

performance evaluation of the Hurst parameter estimation based on different numbers of vanishing 

moments of the mother wavelet. By analyzing a large set of real traffic data, it is evident that the 

UDP Internet traffic reveals the LRD properties with considerably high non-stationary 

processes.Furthermore, it exhibits non-Gaussian marginal distributions. However, by 

increasing the number of vanishing moments,it is impossible to achieve reduction fromLRD to 

become a short range dependence. Thus, it can be shown that there is no significant difference 

in performance estimation of the Hurst parameter for different numbers of vanishing moments 

of the mother wavelet. 
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1. INTRODUCTION 

We have witnessed significant proliferation of Internet usage for more than two decades. There 

is no doubt that since its emergence, the Transmission Control Protocol (TCP) has served as the 

transport protocol of choice for a large portion of Internet traffic applications [1],[2]. However, 

increasing demand on multimedia Internet applications with streaming as well as P2P (Point to 

Point) protocols [3] today has shown that utilization of UDP protocols is growing progressively. 

For example, a study based on CAIDA traces reported the escalation UDP-based traffic in terms 

of the number of packets, bytes and flows was approximately double or more between the year 

of 2002 and 2009 [4]. Our observations on Internet traces over trans-Pacific backbone links 

(collected by the MAWI
1
 working group) reveal that, in 2002, the average rate for UDP-based 

applications was approximately 1 Mbps over 1 year of observation, while in 2008 the UDP 

average rate had increased significantly to become 7.19 Mbps. The reports on the growth of the 

UDP traffic have prompted us to look more carefully at statistical characteristics of traffic traces 

that employ UDP protocol. The main motivation is that by understanding the statistical behavior 

of this Internet traffic, it allows us to study the effect of various model parameters on network 

performance. 

                                                
1
http://mawi.wide.ad.jp 
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A multitude of references demonstrated the presence of the scale-dependent properties in both 

local area [5] and wide area traffic [6], as well as in World Wide Web (WWW) traffic [7]. What 

we mean by the term "scale-dependent properties" is that in these traces, high variability across 

a wide range of time scales was observed for packets or byte arrivals that range from a few 

hundreds of milliseconds up to hundreds of seconds. Under such conditions, the traffic looks 

self-similar and has non-negligible correlations on the arrival counts over a very long time 

interval. Hence, the term long-range dependence that is largely used in the literature and that 

will be adopted in this paper. However, we believe that these conclusions were drawn based on 

the general observation of Internet traffic whereby the TCP protocol has dominated the traces 

[8].  

One of the most popular tool for studying the long-range dependence of Internet traffic is the 

wavelet-based estimator that was proposed in [9],[10],11]. This estimator is considered as the 

most successful method among other methods. This is mainly due to the fact that the wavelet 

spectrum is naturally able to capture self-similar scaling that is present in data that has long-

range dependent statistical properties. In addition, under non-bias conditions and for Gaussian 

processes, the vanishing moments of the mother wavelet successfully convert the long 

dependence range into becoming a short dependence range. This has been the most important 

feature of the underlying wavelet estimator. 

We confine our study in this paper on the following objectives: (i) To investigate whether the 

UDP traffic exhibits the long-range dependent (LRD) properties; (ii) To validate the use of the 

wavelet-based estimator by capturing the marginal distribution of real traces obtained from 

UDP traffic. The observation will be done for different time aggregations to accommodate the 

effects of scaling in the data. It should be noted that the key feature of the wavelet-based 

estimator holds for Gaussian processes. In contrast to this, a recent study suggested that Gamma 

distribution captures best the marginal distribution of Internet traffic for different aggregation 

levels [12]; (iii) To investigate the marginal distribution as well as the dependence structure of 

the wavelet coefficients under conditions where the scaling parameter of the UDP traffic with 

long-range dependent data needs to be estimated; (iv) To analyze the performance of the Hurst 

parameter estimation based on different numbers of vanishing moments of the mother wavelet. 

The goals of this paper are:(1) to explore the statistical characteristics of Internet traffic traces, 

in terms of its dependent structure that are generated from UDP traffic only; (2) to study the 

statistical performance of the wavelet-based estimatorover UDP traffic traces. 

Our primary findings show that UDP traffic traces generally can be categorized as non-Gaussian 

long-range dependent processes with significantly high non-stationary artifacts. Therefore, the 

fact that their marginal distributionsare non-Gaussian calls for further investigation of the 

wavelet estimator performance and, hence, the Hurst parameter estimation of the traces. In 

opposite to this, previous theoretical studies of the wavelet-based estimator assumed a Gaussian 

distribution for the traffic traces. In addition, careful observation of the statistical properties for 

the wavelet coefficients suggests that reduction of the long dependence range into becoming a 

short dependence range cannot be achieved by increasing the number of vanishing moments. 

Accordingly performance of the Hurst parameter estimation might not be affected by increasing 

the number of vanishing moments of the mother wavelet. 

The remainder of this paper is organized according to the following sections. Section 2 recalls 

the statistical concepts underpinning the long-range dependent processes as well as the wavelet 

transform method. In Section 3, the real traffic data sets that have been used in this study will be 

briefly reviewed. It is then followed by a description of UDP traffic traces and their protocol 

characteristics that eventually shape their behavior in terms of scaling dependent structures. 

Section 4 provides a marginal distribution analysis of UDP traces based on the maximum 

likelihood estimation (MLE) to estimate parameters of the Gamma distribution for the real 

traffic traces. Furthermore, the Kolmogorov-Smirnov test will be employed to check the 



International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012 

75 

 

 

 

Gaussianity of the marginal distribution. We shall observe the marginal distribution repeatedly 

for different aggregation intervals. In the same section, we also report analysis for the quasi-

whitening effect in the wavelet estimator and the performance of the Hurst parameter 

estimation. Finally, conclusions on our study will be drawn in Section 5. 

2. THEORETICAL BACKGROUND 

This section gives an overview for the long-range dependence (LRD) and a summary of the 

wavelet spectrum for estimating the Hurst parameter by means of the weighted linear 

regression. The most important attribute of the wavelet-based estimator is underlined in this 

section as a basis for correlation structure analysis of the wavelet coefficients in Section 4. 

2.1. Definition of Long-Range Dependence (LRD) 

Consider a wide sense stationary time-series � = ���: � = 0,1,2,⋯ �be a discrete time with 

LRD. In our study, � could be the time-series of byte counts or packet counts. The series � is 

said to be LRD if its covariance function can be represented as [13] 

 
����~��|�|�������,												� → +∞, (1)  

with�� > 0 is a constant and � ∈ �0.5,1�. It can be seen that the covariance function in Eq. (1) 

appears to be a limiting function, this is because the value 
���� will be equal to ��|�|������� 
for large �. An equivalent statement of Eq. (1) but stated in the frequency domain is 

 Γ�� �~�!| |"��� ,													 → 0, (2) 

where�! is a constant. 

Based on Eq. (1) and Eq. (2), LRD can be defined as a slow power-law decrease of the 

covariance function of a wide sense stationary process with � > 0.5. The Hurst parameter, �, 

in these equations control the degree of LRD. For example, when � gets larger the temporal 

dependence becomes stronger as the covariance function of such a time series decays more 

slowly at infinity. 

2.2. Wavelet Spectrum for LRD Analysis 

We consider a reference function,#�$�,that is characterized by a strictly positive integer 

%& ≥ 1. The function #�$� is called the mother wavelet and the parameter%&is referred to as 

the vanishing moments.The mother wavelet is said to have #�$� vanishing moments if 

 ( $)#�$�d$ℝ = 0for		/ = 0,1,2,⋯ ,%& − 1. (3) 

This equation means that #�$� is orthogonal to any polynomial of degree %& − 1. In the 

context of LRD analysis, the vanishing moments, #�$�, plays an important role for the 

estimation of the Hurst parameter variance [9]. Theoretically it has been shown that the larger 

#�$� is, the better the estimation. We shall observe the impact of the vanishing moments on the 

Hurst parameter estimation for UDP traffic traces in Section 4. 

Let us now concentrate on a specific discrete wavelet function called the dyadic grid wavelet, 

which will be used in this study. It has the following form 

 #1,2�$� = 2�1/�#42�1$ − 56,											7, 5 ∈ ℤ, (4) 

signifying dilations to scales 21 and translation to a time position 215 of the mother wavelet, 

#�$�, for every integer number 7 and 5. 
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The discrete wavelet transform (DWT) of a function 9�$�can be obtained through the following 

linear operation: 

 :;�7, 5� = ( #1,2�$�ℝ 9�$�d$ , 

 = ( 2�1/�#42�1$ − 569�$�d$ℝ 7, 5 ∈ ℤ, (5) 

where:;�7, 5� is referred to as the wavelet coefficient [14]. 

Taking Eq. (5) for the case of a second-order stationary LRD process �, we have the wavelet 

coefficients :��7, 5�. The mean energy of the wavelet coefficients at scale 7 can be defined as: 

 ℰ1 = =:��7, 5�� ≈ �!?21����"�,										21 → ∞ (6) 

provided that the integral ? = ( | |"���|ΨA� �|�ℝ d  converges. It can be observed that the 

wavelet coefficients on scale 7 contain the frequency spectrum of the process � around 

frequency 21. The most interesting feature of the wavelet-based estimator is that, for the 

Gaussian case, the correlation structure of the wavelet coefficients is not LRD (while the 

original data is still LRD). In other words, correlation of the :��7, 5�� at all scales 21 is short-

range dependent provided that the non-bias condition  %& > � + 0.5 is satisfied. This specific 

feature is called the quasi-whitening effect. Hence, the reduction on the dependence structure of 

the wavelet coefficients allows us to use the standard sample variance for energy estimation. 

Based on a previous study in [15], a spectral estimator for the mean energy can be derived by 

taking a time average of the |:��7, 5��| at fixed scale 21 as follows 

 B1 = "
CD

∑ |:��7, 5��|
CD
2F" , (7) 

whereG1  is the number of available wavelet coefficients at scale 21. It can be expected that 

G1 = G/21, where G is the length of �. However, it should be noted that Eq. (7) is generally 

valid for the case of Gaussian processes [16]. 

Now, following the procedure in [9] and looking at Eq. (6) and Eq. (7), the Hurst parameter, �, 

can be estimated  by using a weighted linear regression of log� B1 on scale 7 as 

 �J = "
� K∑ L1 log� B11M

1F1N O + "
� (8) 

with 1 ≤ 7" < 7� ≤ R, and the weights L1 are chosen such that ∑ L1 = 01M
1F1N and ∑ 7L1 = 11M

1F1N . 

3. DATA SETS AND WAVELET SPECTRUM OF UDP TRACES 

3.1. Data Sets for the Study 

The Internet traffic data sets in this study were retrieved from the Measurement and Analysis on 

the WIDE Internet (MAWI) working group site that resides in Japan, and the Waikato Internet 

Traffic Storage (WITS), University of Waikato, New Zealand. There are four data sets involved 

in the study as shown in Table 1. �JSand�JT are the global estimated Hurst parameters for byte 

and packet counts, respectively. The estimated Hurst parameters in this table were obtained 

using the wavelet estimator. 

The MAWI traffic repository records a collection of traffic data from WIDE backbone 

networks, which is a Japanese academic network that connects universities and research 

institutes. Our main data sets in the analysis herein were captured at Sample point-F between 18 
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March 2008 and 20 March 2008 as part of a Day in the Life of the Internet project. The traces 

were anonymized in their IP addresses and their payloads had been removed. The Sample point-

F started to operate in June 2006 substituted for Sample point-B that was operated from January 

2001 to June 2006. The Sample point-B had 100Mbps bandwidth with an 18Mbps Committed 

Access Rate (CAR), while the link for Sample point-F has over-provisioned bandwidth of 

1Gbps, with 150Mbps CAR. In our study, the choice of the traces mawi1, mawi2 and mawi3 

represents morning, afternoon and night sessions. By utilizing this variation in time, we are able 

to capture different behavior of the Internet traffic. We also chose them in such a way that 

anomalies in the traffic traces during the observation time were minimized. See [17] and its 

corresponding website (http://www.fukuda-lab.org/mawilab/) to assess the traffic 

anomalies. All applications that employ UDP as their transport protocol have been filtered out 

for the purposes of our study. In this case there are almost no anomalies found in the UDP-

based traffic traces, most of the detected abnormalities are TCP related attacks. In addition, the 

UDP trace called wits was collected from the WITS archive. The trace used in this study was 

called Auckland IX as it was taken at the end point of the University of Auckland, New 

Zealand
2
 in March 2008. 

Table 2. Summary of the UDP traces data. 

Trace Date Duration UJV UJW 

mawi1 18 March 2008 9.00am-11.00am 0.92 1.01 

mawi2 19 March 2008 14.00pm-16.00pm 0.99 0.96 

mawi3 20 March 2008 19.00pm-21.00pm 0.90 0.93 

wits 28 March 2008 08.00am-10.00am 0.89 0.72 

 

3.2. Wavelet Spectrum of the UDP Traces and Hurst Parameter Estimation 

The wavelet spectrum for all traces (i.e., mawi1, mawi2, mawi3 and wits) in terms of byte 

arrival counts are shown in Figure 1. The plots depict the log-scale diagram of the wavelet 

spectrum, B1, as a function of scale 7.As shown in Section 2.2., the statistic B1 represents the 

energy of the traffic trace concentrated at around a frequency range related to the scale 7. In 

Figure 1, the vertical line at each point signifies the confidence interval of B1at a given scale 7 
and a line that is fitted to the wavelet spectrum at large scales(in each trace) is the fitting line 

that is used for estimating the Hurst parameter, �J (i.e. the slope of the line).  

In theory, a trace statistically exhibits LRD when 0.5 < �J < 1 [13]. It can be seen in Figure 1 

that the wavelet spectrum for all traces show consistency with long-range dependent structure 

particularly at the coarse scale [18],[10]. The estimated Hurst parameter �JS for byte counts and 

�JT for packet counts, for each data set is shown in Table 1. It is clear that the values of the �JS 

and the �JTfor all traces are larger than 0.5, yet smaller than 1. However, variability in 

thespectrum, which is represented by a bumpy look of the wavelet spectrum, is clear. The non-

linier wavelet spectrum lines in the figure indicate the presence of non-stationary effects in the 

traces. Because of these non-stationary effects, estimation of the Hurst parameters can be larger 

than 1, for example as in the �JTofmawi1 trace. In the presence of the non-stationarity effects, 

estimation may only be valid if they are taken in the coarse scales. Hence, in Table 1, the Hurst 

parameters were estimated from the slope of the fitted lines from 7=12 to 7=16.  

The sources of non-stationarity might be as a result of local mean-shifts in the traffic traces and 

the presence of high frequency oscillation. For example, Figure 2 reports the magnitude 

                                                
2
http://wand.cs.waikato.ac.nz 



International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012 

78 

 

 

 

fluctuations of the periodogram for all UDP traces.It can be noticed thatspikes are noticeable at 

a range of frequencies. An empirical study in [5] shows that the bumpy look in the wavelet 

spectrum starts to appear as soon as ≫ %&. 

 

 

Figure 1.The log-scale wavelet spectrum of the traffic traces in the study in terms of byte 

arrival counts. The plot depicts the log-scale wavelet spectrum, B1, as a function of the 

scale 7.  

 

Figure 2.Periodogram of two hours UDP traces based on byte counts that arrive on a link 

in 10ms time intervals. 

In addition, due to the presence of the non-stationarity artifacts in the UDP traffic traces, 

estimation the Hurst parameter of the LRD becomes a difficult task. Nevertheless, it is worth 
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mentioning that a rather detailed analysis of time-series in the presence of non-stationary effects 

including some statistical tools, were proposed and outlined in [19][20]. Given this limitation, 

our focus in this paper is not specifically on the methods for estimating the �J parameter, we 

only use the available tools whenever they are necessary to produce the estimated Hurst 

parameter, �J. For example, the local analysis of self-similarity outlined in [20] can accurately 

estimate the Hurst parameter for data that contains the non-stationarity elements. 

In this study, the Hurst parameter estimation was carried out by firstly localizing the analysis of 

the time-series into smaller blocks of data instead of utilizing the whole block of the time-series, 

and then, �Jis estimated by averaging those local Hurst parameters. The methodof local analysis 

of self-similarity has advantage of washing-out the effects of the non-stationarity that are 

present in the time-series. The Hurst parameter estimation and further discussions will be 

elaborated in Section 4. 

4. RESULTS AND DISCUSSIONS 

This section covers the main results and some discussions of the study. It firstly focuses on the 

marginal distribution characterization of the UDP traces. It is then followed by an analysis of 

the wavelet coefficient statistics in the light of the quasi-whitening effect (mentioned in Section 

2). Lastly, performance of the Hurst parameter estimation for different numbers of the vanishing 

moments, %&, and different scales will be discussed. 

4.1. Marginal Distributions of the UDP Traces 

Marginal distributions of the UDP traces in terms of byte and packet counts are analyzed by 

means of empirical histograms for different aggregation levels. In order to represent a wide 

range of aggregation levels, we have used aggregation levels of Y = 1,2,⋯ ,10, that correspond 

to aggregation times of 2Z × 10ms. However, in Figure 3 and Figure 4 we only show empirical 

histograms for the case of Y = 3,4,6,7 that signify aggregation time, Δ, of 80ms, 160ms, 640ms 

and 1.28s, respectively. 

During the study, we tried different types of distribution models including the Negative 

Binomial distribution as suggested in [22], the Weibull distribution and the Gamma distribution 

[12] to be fitted to the marginal distributions of the UDP traces for both byte and packet counts. 

However, we found that the Negative Binomial and the Weibull did not fit the real UDP traffic 

marginal distributions very well for a wide range of aggregation levels. Thus, to account for the 

non-Gaussianity marginal distributions, we utilized the Gamma distribution, which had been 

considered to be a satisfactory model for traffic traces for both small and large aggregation 

levels [12].  

The fitted lines in Figure 3 and Figure 4 represent Gamma laws that are characterized by two 

parameters: the shape parameter a > 0 and the scale parameter b.Probability density function 

(pdf) of the Gamma law is defined as follows: 

 Γc,d�e� = "
df�c� K

g
dO h

K�i
jO (10) 

where the Γ�. � represents the standard Gamma function. Varying the shape parameter from 

a = 1	 to a = +∞ corresponds to exponential to Gaussian law distributions. Hence, the 

distance between Γc,d�e� and Gaussian law is controlled by 1/a. To be specific, the skewness 

of the Γc,d�e� is defined as 2/√a and its kurtosis is espresed as 3 + 6/√a. In contrast to this, 

Gaussian has skewness=0 and kurtosis=3. 
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The parameters of a1 and b1correspond to the estimated value of aand bat an aggregation level 

7, respectively. For each UDP traces, the parameterswere systematically estimated using the 

maximum likelihood estimator (MLE) with 95% confidence interval.They are shown in Table 2 

together with their estimated skewness and kurtosis. We also checked the closeness of the UDP 

trace marginal distributions to the Gaussian law using the Kolmogorov-Smirnov test as shown 

in right hand side of Table 2. The result is ℎ = 1 if the test rejects the hypothesis that the 

particular UDP trace under investigation has a Gaussian distribution at the 5% significance 

level. 

 

 

Figure 3. Marginal distributions of the UDP trace mawi3 in terms of byte counts. 

 

Figure 4. Marginal distributions of the UDP trace mawi3 in terms of packet counts 
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By analyzing Table 2, it can be concluded that the marginal distributions of the UDP traffic 

traces in the study are shown to be non-Gaussian. It is also very interesting to see that increasing 

the aggregation level may result in shifting the distribution towards the Gaussian distribution 

(i.e., the skewness gets close to 0 and the kurtosis gets close to 3). However, due to data 

limitations, it is not achievable in this study. On the other hand, the Kolmogorov-Smirnov test 

plays an important role in confirming the non-Gaussianity characteristic.It is particularly useful 

for the case of the mawi3 trace where estimation of the shape parameter, a, produces very large 

values. Theoretically, a specific Gamma distribution with large value of a corresponds to the 

Gaussian laws. It can be seen in the table, although the mawi3 tracesobey the Gamma laws 

with very large values of the shape parameter (tend to move toward the Gaussian law), the 

Kolmogorov-Smirnov test confirms that they cannot be categorized as Gaussian. 

Table 2. Gamma distribution parameters and Gaussianity check for the UDP traces data 

Trace mn on Skewness Kurtosis 
KS-

Check 

mawi1(byte) ap = 5.40 

aq = 6.41 

ar = 7.96 

at = 8.50 

bp = 4335.6 

bq = 7307 

br = 23525 

bt = 44063 

0.86 

0.79 

0.71 

0.69 

5.58 

5.37 

5.13 

5.06 

ℎ = 1 

ℎ = 1 

ℎ = 1 

ℎ = 1 

mawi1(packet) ap = 9.95 

aq = 12.44 

ar = 18.11 

at = 20.19 

bp = 13.69 

bq = 21.89 

br = 60.16 

bt = 107.93 

0.63 

0.57 

0.47 

0.45 

4.90 

4.70 

4.41 

4.36 

ℎ = 1 

ℎ = 1 

ℎ = 1 

ℎ = 1 

mawi2(byte) ap = 4.38 

aq = 5.16 

ar = 5.93 

at = 6.12 

bp = 12339 

bq = 20947 

br = 72862 

bt = 141290 

0.96 

0.88 

0.82 

0.81 

5.87 

5.64 

5.46 

5.43 

ℎ = 1 

ℎ = 1 

ℎ = 1 

ℎ = 1 

mawi2(packet) ap = 9.55 

aq = 11.12 

ar = 13.63 

at = 14.37 

bp = 21.03 

bq = 36.12 

br = 117.85 

bt = 223.50 

0.65 

0.60 

0.54 

0.53 

4.94 

4.80 

4.63 

4.58 

ℎ = 1 

ℎ = 1 

ℎ = 1 

ℎ = 1 

mawi3(byte) ap = 9.89 

aq = 11.89 

ar = 14.63 

at = 15.47 

bp = 4383.7 

bq = 7294.5 

br = 23715 

bt = 44834 

0.64 

0.58 

0.52 

0.51 

4.91 

4.74 

4.57 

4.53 

ℎ = 1 

ℎ = 1 

ℎ = 1 

ℎ = 1 

mawi3(packet) ap = 16.45 

aq = 20.63 

ar = 29.41 

at = 32.60 

bp = 12.80 

bq = 20.40 

br = 57.72 

bt = 103.29 

0.49 

0.44 

0.37 

0.35 

4.48 

4.32 

4.11 

4.05 

ℎ = 1 

ℎ = 1 

ℎ = 1 

ℎ = 1 

wits(byte) ap = 3.51 

aq = 4.12 

ar = 6.15 

at = 7.97 

bp = 8560 

bq = 14561 

br = 39082 

bt = 60288 

1.07 

0.98 

0.81 

0.71 

6.20 

5.95 

5.42 

5.13 

ℎ = 1 

ℎ = 1 

ℎ = 1 

ℎ = 1 

wits(packet) ap = 7.78 

aq = 10.35 

ar = 17.87 

at = 22.86 

bp = 20.850 

bq = 31.35 

br = 72.61 

bt = 113.49 

0.72 

0.62 

0.47 

0.42 

5.15 

4.87 

4.42 

4.25 

ℎ = 1 

ℎ = 1 

ℎ = 1 

ℎ = 1 
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4.2. The Wavelet Coefficients Statistics 

Theoretically, the correlation structure of the wavelet coefficients:��7, 5�� are short-range 

dependent at all scales 21 provided that the non-bias requirement%& > � + 0.5 is satisfied. 

However, it should be noted that this condition is valid only for Gaussian process. It has been 

shown that the UDP traffic traces in our study inherit the LRD characteristics (in Section 3.2) as 

well as the non-Gaussian marginal distribution (in Section 4.1).This sub-section investigates the 

statistical properties of the wavelet coefficients for the non-Gaussian long-range dependence 

that appears from our UDP traffic traces. The statistics of the wavelet coefficients will be 

observed through marginal distributions and the covariance structure for different number of 

vanishing moments, %&. 

Figure 5 and Figure 6 present the estimated skewness and kurtosis of the wavelet coefficients 

for different numbers of vanishing moments. Inorder to overcome the non-stationarity effects in 

the traces, estimation of the skewness and kurtosis was performed by dividing the two-hour 

UDP traces into 24 blocks (each of the mcorresponds to a 5 minute time interval). Then the 

wavelet coefficients were obtained from Eq. 5 in Section 2, where the UDP traffic traces 

samples substitute the function 9�$�.In this way, the focus of the study is on the local behavior 

of the time series instead of the global one. Similar analysis for the traces that were distorted by 

then on-stationarity effects was discussed in [20].The figures also show the estimation of the 

skewness and kurtosis for different %&with 95%confidence intervals.The confidence interval 

arerepresented by vertical lines at each point.On the other hand, the horizontal red lines serve as 

reference lines, i.e. the Gaussian skewness=0 and the Gaussian kurtosis=3. 

 

Figure 5. Estimated skewness of the wavelet coefficients for 2 hours UDP traces based on 

bytecounts.%& = 2 represented by a line with '*',%& = 3 represented by a line with 'o', and 

%& = 5represented by a line with square. 

Looking at these figures, it can be clearly seen that the marginal distributions of the wavelet 

coefficients for all UDP traces in the study are approaching the Gaussian lawat large scale, i.e., 

21 → ∞. It is noticeable that the skewness of the traces tends to converge to 0 while the kurtosis 

of all traces decreases slowly to 3. The second important characteristic of the wavelet 

coefficientsis that both the skewness and kurtosis of the traces, for different values of %&, have 
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tendencies to converge to a certain value at large scale. This is an indication that increasing the 

number of vanishing moments of the mother wavelet does not affect the performance of the 

wavelet estimator. This result is consistent with empirical studies shown in [23] andthis finding 

confirms that for UDP traces data that possess the non-Gaussian LRD behavior, the wavelet 

coefficients eventually becomes Gaussian only at large scale. Hence, it consequently verifies the 

validity of the non-bias condition of the wavelet-based estimator used in this study. 

The next observation concerns an important feature of awavelet estimator called the quasi-

whitening effect, which hasan impact on transforming the dependence structure of the 

waveletcoefficients from long to short by increasing the degree of the%&[24]. Theoretically, it 

was stated that thewavelet transform with a higher degree vanishing moments willdisentangle 

the dependence structure of the traffic from longdependence to become short dependence 

irrespective of the marginaldistributions as long as %& > � + 0.5[24].Hence, the case for 

%& = 1 was not used in the study. 

 

Figure 6. Estimated kurtosis of the wavelet coefficients for 2 hours UDP traces based on 

bytecounts.%& = 2 represented by a line with '*', %& = 3 represented by a line with 'o', and 

%& = 5 represented by a line with square. 

Figure 7 provides the dependence behaviour of themawi2 traces observed through covariance 

of the wavelet coefficients. Although examinations were also carriedout for all other traces, due 

to space limitations they are notshown here. The top part of the figure shows the covarianceat 

scale 7 = 2 and the bottom part shows the covariance for scale7 = 9, while the left column 

depicts the covariance with%& = 2  and the right column shows the covariance with%& = 5. It 

can be observed that there is no significantimpact on the long range dependence structure either 

at the smallscale 7 = 2 or the large scale 7 = 9. A careful look from left toright in the figure also 

reveals that increasing the degree ofvanishing moments does not provide any impact on 

decreasing thedependence structure. Therefore, the fact that thequasi-whitening effect appears to 

be valid for Gaussianprocesses, it does not seem to apply for the non-Gaussian processeslike the 

UDP traces in this study. This result is again in agreementwith previous work in [23]. 
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4.3. Performance of the Hurst Parameter Estimation 

The Hurst parameter is estimated by employing methods outlined in Section 2.2, specifically 

using Eq. (9). Various values of %&spanning from 2 to 5 were used in order to evaluate the 

effect of increasing the number of vanishing moments of the mother wavelet towards the 

performance of the Hurst parameter estimation. Results are also presented for different scale 

regimes as can be seen in Table 3. Fine scalesare observed at range 7" = 3to 7� = 6, coarse 

scales at range 7" = 8 to 7� = 12 and global scales at range 7" = 3 to 7� = 12. 

The estimated Hurst parameter, �J, and its variance, v�J , were taken from the local analysis of 

the time-series.There are approximately7.2 × 10wsamples of data (representing 2 hours of UDP 

traces)that had been subdivided into 24 blocks. Thus, each block of data signifies 3.0 ×
10qsamples of data. The wavelet spectrum estimator was then applied for each block of this 

data to estimate the Hurst parameter and the variance. 

 

Figure 7. Covariance of the wavelet coefficients for the mawi2 traces. Top part: covariance at 

scale 7 = 2,bottom part: covariance for scale	7 = 9. Left column: covariancewith %& = 2, Right 

column: covariance with%& = 5. 

As can be seen in Table 3, a relatively small value of sample variance for different kinds of 

time-series data and for a range value of %& indicates that the statistical discrepancy between 

each block of data is fairly small. The only exception is for the case of the mawi2 trace for both 

byte and packet counts, where large values of its variance for different %& result in significantly 

diverse sample means �J. This is likely due to the statistical characteristic of the mawi2 traces 

in away that the non-stationarity does not affect the global observation of time-series only, but 

also distorts the time-series up to a small block of observations. 

Evaluation of Table 3 clearly shows that for the non-Gaussian processes like UDP traces, there 

may seem to be no difference in the performance of the estimated Hurst parameter �J as well as 

its varian, v�J , as the number of vanishing moments were increased. This can be linked to the 

previous examination in Section 4.2., whereby setting the %& to large values does not 

contributeto transforming the dependence structure of the wavelet coefficients from long to 

short. 
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Inspection at several scales shows significant difference for �J. This result agrees with common 

analysis of the wavelet estimator for Internet traffic. See, for example in [25],[10]. However, the 

coarse scale asymptotic analysis of the wavelet coefficients in Eq. (8) suggests that it is 

necessary to confine the linear regression to estimating �J only on the coarse scale. Comparing 

�J in the coarse scale of Table 3 to the previous estimation in Table 1, it is clear that global 

analysis time-series gives an overestimate of the values for the Hurst parameter. For example, 

for the wits traffic, in Table 1 the estimated �JS = 0.89 and �JT = 0.72 for byte arrivals and 

packet arrivals, respectively, while local analysis in Table 3 only gives approximately �JS =
0.54 and �JT = 0.66 for byte counts and packet counts, respectively. 

Furthermore, observation on local analysis UDP traffic in the coarse scale, i.e. between 7" = 8 

and 7� = 12, shows that the estimated Hurst parameter values in Table 3 lie between 0.5 and 1. 

This is again an indication that the UDP traffic under investigation statistically exhibits LRD. 

Consequently, the LRD characteristics that has been proved to be existingin the UDP-based 

Internet traffic has important implications on the performance, design and dimensioning of the 

current network. See for example in [18]. 

Table 3. Sample mean and sample variance of �J 

 %& = 2 %& = 3 %& = 5 

 �J v�J  �J v�J  �J v�J  
mawi1 (byte) 

�7", 7�� = �3,6� 
�7", 7�� = �3,12� 
�7", 7�� = �8,12� 

0.62 

0.63 

0.78 

 

0.060 

0.050 

0.061 

 

0.64 

0.65 

0.74 

 

0.055 

0.060 

0.068 

 

0.66 

0.64 

0.73 

 

0.045 

0.050 

0.098 

mawi1 (packet) 

�7", 7�� = �3,6� 
�7", 7�� = �3,12� 
�7", 7�� = �8,12� 

 

0.63 

0.63 

0.72 

 

0.026 

0.034 

0.046 

 

0.65 

0.64 

0.69 

 

0.024 

0.036 

0.033 

 

0.65 

0.63 

0.69 

 

0.020 

0.032 

0.081 

mawi2 (byte) 

�7", 7�� = �3,6� 
�7", 7�� = �3,12� 
�7", 7�� = �8,12� 

 

0.51 

0.57 

0.85 

 

0.007 

0.013 

0.104 

 

0.50 

0.56 

0.86 

 

0.009 

0.013 

0.103 

 

0.52 

0.55 

0.71 

 

0.008 

0.013 

0.220 

mawi2 (packet) 

�7", 7�� = �3,6� 
�7", 7�� = �3,12� 
�7", 7�� = �8,12� 

 

0.58 

0.63 

0.83 

 

0.009 

0.013 

0.113 

 

0.58 

0.62 

0.81 

 

0.008 

0.011 

0.123 

 

0.59 

0.62 

0.70 

 

0.008 

0.011 

0.230 

mawi3 (byte) 

�7", 7�� = �3,6� 
�7", 7�� = �3,12� 
�7", 7�� = �8,12� 

 

0.55 

0.58 

0.87 

 

0.012 

0.019 

0.070 

 

0.58 

0.59 

0.86 

 

0.021 

0.027 

0.096 

 

0.58 

0.58 

0.82 

 

0.016 

0.023 

0.162 

mawi3 (packet) 

�7", 7�� = �3,6� 
�7", 7�� = �3,12� 
�7", 7�� = �8,12� 

 

0.58 

0.61 

0.85 

 

0.007 

0.012 

0.067 

 

0.59 

0.61 

0.84 

 

0.009 

0.015 

0.093 

 

0.59 

0.61 

0.84 

 

0.008 

0.013 

0.143 

wits (byte) 

�7", 7�� = �3,6� 
�7", 7�� = �3,12� 
�7", 7�� = �8,12� 

 

0.62 

0.59 

0.54 

 

0.003 

0.002 

0.023 

 

0.64 

0.60 

0.55 

 

0.002 

0.001 

0.068 

 

0.62 

0.60 

0.65 

 

0.001 

0.001 

0.047 

wits (packet) 

�7", 7�� = �3,6� 
�7", 7�� = �3,12� 
�7", 7�� = �8,12� 

 

0.62 

0.60 

0.66 

 

0.002 

0.001 

0.023 

 

0.63 

0.61 

0.66 

 

0.001 

0.001 

0.040 

 

0.62 

0.60 

0.65 

 

0.001 

0.001 

0.047 
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5. CONCLUSIONS 

Internet traffic traces that utilized the UDP transport protocol have been observed. In this work, 

we investigated the performance of a wavelet-based estimator employed for the non-Gaussian 

long-range dependent data. 

It is evident that samples of UDP traffic that arrived on a link during 10ms time intervals taken 

from various data sets exhibit non-Gaussian distributions for both byte and packet counts. A 

careful examination through their marginal distribution properties showed that their 

distributions are highly skewed to the left and well-modeled by the Gamma law for different 

aggregation levels.  

Evaluation of the wavelet coefficient marginal distributions for all UDP traces was done in 

terms of estimated skewness and kurtosis for different numbers of vanishing moments, %&. It 

showed that for the UDP trace data that possess non-Gaussian marginal distributions, the 

wavelet coefficients marginal distribution eventually become Gaussian at a large scale only. 

However, increasing the degree of vanishing moments does not result in any impact on 

decreasing the dependence structure of the wavelet coefficients. Therefore, the fact that the 

quasi-whitening effect appears to be valid for Gaussian processes, it does not seem to apply for 

non-Gaussian processes like the UDP traces in this study. As a result of this behavior, there may 

seem to be no difference on the performance of the �J as well as the v�J  as the number of 

vanishing moments were increased.Numerical simulations on the real UDP traffic traces 

indicated that increase on the number vanishing moments of the wavelet estimator, did not 

change the performance of the �Jand the v�J  significantly. 

We close our conclusions with observations on local analysis UDP traffic in the coarse scale, 

i.e. between 7" = 8and 7� = 12. It showed that the UDP traffic under investigation statistically 

exhibits LRD behavior, where 0.5 < �J < 1. Hence, the LRD characteristics that is present in 

the UDP-based Internet traffic gives important implications on the performance, design and 

dimensioning of the current network. 
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