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ABSTRACT

In this paper, we consider statistical characteristics of real User Datagram Protocol (UDP) traffic. Four
main issues in the study include(i) the presence of long rangedependence (LRD) in the UDP traffic,(ii) the
marginal distribution of the UDP traces,(iii) dependence structure of wavelet coefficients,(iv) and
performance evaluation of the Hurst parameter estimation based on different numbers of vanishing
moments of the mother wavelet. By analyzing a large set of real traffic data, it is evident that the
UDP Internet traffic reveals the LRD properties with considerably high non-stationary
processes.Furthermore, it exhibits non-Gaussian marginal distributions. However, by
increasing the number of vanishing moments,it is impossible to achieve reduction fromLRD to
become a short range dependence. Thus, it can be shown that there is no significant difference
in performance estimation of the Hurst parameter for different numbers of vanishing moments
of the mother wavelet.

KEYWORDS

Long range dependence, User Datagram Protocol, Wavelet, Internet traffic

1. INTRODUCTION

We have witnessed significant proliferation of Internet usage for more than two decades. There
is no doubt that since its emergence, the Transmission Control Protocol (TCP) has served as the
transport protocol of choice for a large portion of Internet traffic applications [1],[2]. However,
increasing demand on multimedia Internet applications with streaming as well as P2P (Point to
Point) protocols [3] today has shown that utilization of UDP protocols is growing progressively.
For example, a study based on CAIDA traces reported the escalation UDP-based traffic in terms
of the number of packets, bytes and flows was approximately double or more between the year
of 2002 and 2009 [4]. Our observations on Internet traces over trans-Pacific backbone links
(collected by the MAWI' working group) reveal that, in 2002, the average rate for UDP-based
applications was approximately 1 Mbps over 1 year of observation, while in 2008 the UDP
average rate had increased significantly to become 7.19 Mbps. The reports on the growth of the
UDP traffic have prompted us to look more carefully at statistical characteristics of traffic traces
that employ UDP protocol. The main motivation is that by understanding the statistical behavior
of this Internet traffic, it allows us to study the effect of various model parameters on network
performance.

"http://mawi.wide.ad.jp
DOI : 10.5121/ijenc.2012.4505 73
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A multitude of references demonstrated the presence of the scale-dependent properties in both
local area [5] and wide area traffic [6], as well as in World Wide Web (WWW) traffic [7]. What
we mean by the term "scale-dependent properties" is that in these traces, high variability across
a wide range of time scales was observed for packets or byte arrivals that range from a few
hundreds of milliseconds up to hundreds of seconds. Under such conditions, the traffic looks
self-similar and has non-negligible correlations on the arrival counts over a very long time
interval. Hence, the term long-range dependence that is largely used in the literature and that
will be adopted in this paper. However, we believe that these conclusions were drawn based on
the general observation of Internet traffic whereby the TCP protocol has dominated the traces

[8].

One of the most popular tool for studying the long-range dependence of Internet traffic is the
wavelet-based estimator that was proposed in [9],[10],11]. This estimator is considered as the
most successful method among other methods. This is mainly due to the fact that the wavelet
spectrum is naturally able to capture self-similar scaling that is present in data that has long-
range dependent statistical properties. In addition, under non-bias conditions and for Gaussian
processes, the vanishing moments of the mother wavelet successfully convert the long
dependence range into becoming a short dependence range. This has been the most important
feature of the underlying wavelet estimator.

We confine our study in this paper on the following objectives: (i) To investigate whether the
UDP traffic exhibits the long-range dependent (LRD) properties; (ii) To validate the use of the
wavelet-based estimator by capturing the marginal distribution of real traces obtained from
UDP traffic. The observation will be done for different time aggregations to accommodate the
effects of scaling in the data. It should be noted that the key feature of the wavelet-based
estimator holds for Gaussian processes. In contrast to this, a recent study suggested that Gamma
distribution captures best the marginal distribution of Internet traffic for different aggregation
levels [12]; (iii) To investigate the marginal distribution as well as the dependence structure of
the wavelet coefficients under conditions where the scaling parameter of the UDP traffic with
long-range dependent data needs to be estimated; (iv) To analyze the performance of the Hurst
parameter estimation based on different numbers of vanishing moments of the mother wavelet.

The goals of this paper are:(1) to explore the statistical characteristics of Internet traffic traces,
in terms of its dependent structure that are generated from UDP traffic only; (2) to study the
statistical performance of the wavelet-based estimatorover UDP traffic traces.

Our primary findings show that UDP traffic traces generally can be categorized as non-Gaussian
long-range dependent processes with significantly high non-stationary artifacts. Therefore, the
fact that their marginal distributionsare non-Gaussian calls for further investigation of the
wavelet estimator performance and, hence, the Hurst parameter estimation of the traces. In
opposite to this, previous theoretical studies of the wavelet-based estimator assumed a Gaussian
distribution for the traffic traces. In addition, careful observation of the statistical properties for
the wavelet coefficients suggests that reduction of the long dependence range into becoming a
short dependence range cannot be achieved by increasing the number of vanishing moments.
Accordingly performance of the Hurst parameter estimation might not be affected by increasing
the number of vanishing moments of the mother wavelet.

The remainder of this paper is organized according to the following sections. Section 2 recalls
the statistical concepts underpinning the long-range dependent processes as well as the wavelet
transform method. In Section 3, the real traffic data sets that have been used in this study will be
briefly reviewed. It is then followed by a description of UDP traffic traces and their protocol
characteristics that eventually shape their behavior in terms of scaling dependent structures.
Section 4 provides a marginal distribution analysis of UDP traces based on the maximum
likelihood estimation (MLE) to estimate parameters of the Gamma distribution for the real
traffic traces. Furthermore, the Kolmogorov-Smirnov test will be employed to check the
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Gaussianity of the marginal distribution. We shall observe the marginal distribution repeatedly
for different aggregation intervals. In the same section, we also report analysis for the quasi-
whitening effect in the wavelet estimator and the performance of the Hurst parameter
estimation. Finally, conclusions on our study will be drawn in Section 5.

2. THEORETICAL BACKGROUND

This section gives an overview for the long-range dependence (LRD) and a summary of the
wavelet spectrum for estimating the Hurst parameter by means of the weighted linear
regression. The most important attribute of the wavelet-based estimator is underlined in this
section as a basis for correlation structure analysis of the wavelet coefficients in Section 4.

2.1. Definition of Long-Range Dependence (LRD)

Consider a wide sense stationary time-series Y = (Y;:7 = 0,1,2,+--)be a discrete time with
LRD. In our study, Y could be the time-series of byte counts or packet counts. The series Y is
said to be LRD if its covariance function can be represented as [13]

]/y(T)"‘Clel_(Z_ZH), T = 400, (1)

withc, > 0 is a constant and H € (0.5,1). It can be seen that the covariance function in Eq. (1)

appears to be a limiting function, this is because the value yy(7) will be equal to cyl‘rl_(z_ZH )
for large 7. An equivalent statement of Eq. (1) but stated in the frequency domain is

Ly (W) ~ce|v[*~2H, V-0, 2
wherecy is a constant.

Based on Eq. (1) and Eq. (2), LRD can be defined as a slow power-law decrease of the
covariance function of a wide sense stationary process with H > 0.5. The Hurst parameter, H,
in these equations control the degree of LRD. For example, when H gets larger the temporal
dependence becomes stronger as the covariance function of such a time series decays more
slowly at infinity.

2.2. Wavelet Spectrum for LRD Analysis

We consider a reference function,i(t),that is characterized by a strictly positive integer
My, = 1. The function ¥(t) is called the mother wavelet and the parameterMyis referred to as
the vanishing moments.The mother wavelet is said to have 1(t) vanishing moments if

f]R tmlp(t)dt = 0for m =0,1,2, 'Ml,b -1, 3)

This equation means that ¥(t) is orthogonal to any polynomial of degree My, — 1. In the

context of LRD analysis, the vanishing moments, (t), plays an important role for the
estimation of the Hurst parameter variance [9]. Theoretically it has been shown that the larger
Y (t) is, the better the estimation. We shall observe the impact of the vanishing moments on the
Hurst parameter estimation for UDP traffic traces in Section 4.

Let us now concentrate on a specific discrete wavelet function called the dyadic grid wavelet,
which will be used in this study. It has the following form

Vi) =272y (27t — k), j.k €L, (4)

signifying dilations to scales 2/ and translation to a time position 2/k of the mother wavelet,
Y (t), for every integer number j and k.
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The discrete wavelet transform (DWT) of a function g(t)can be obtained through the following
linear operation:

dg(G k) = [pix(@® g(®dt,

= [p277y(27t — k)g(t)dtj, k € Z, (5)
wheredg (j, k) is referred to as the wavelet coefficient [14].

Taking Eq. (5) for the case of a second-order stationary LRD process Y, we have the wavelet
coefficients dy (j, k). The mean energy of the wavelet coefficients at scale j can be defined as:

& = Edy(j,k)? ~ c,C2/H-D), 2/ - o0 (6)

provided that the integral € = [ [v|*"2"|W,(v)|* dv converges. It can be observed that the
wavelet coefficients on scale j contain the frequency spectrum of the process Y around
frequency 2/. The most interesting feature of the wavelet-based estimator is that, for the
Gaussian case, the correlation structure of the wavelet coefficients is not LRD (while the
original data is still LRD). In other words, correlation of the dy(j, k)? at all scales 2/ is short-
range dependent provided that the non-bias condition My, > H + 0.5 is satisfied. This specific
feature is called the quasi-whitening effect. Hence, the reduction on the dependence structure of
the wavelet coefficients allows us to use the standard sample variance for energy estimation.

Based on a previous study in [15], a spectral estimator for the mean energy can be derived by
taking a time average of the |dy (j, k)?| at fixed scale 2/ as follows

N; .
S = Nijzk;ﬂdyo,km, 7

whereN; is the number of available wavelet coefficients at scale 2J. It can be expected that
N;=N/ 2/, where N is the length of Y. However, it should be noted that Eq. (7) is generally
valid for the case of Gaussian processes [16].

Now, following the procedure in [9] and looking at Eq. (6) and Eq. (7), the Hurst parameter, H,
can be estimated by using a weighted linear regression of log, S; on scale j as

g—21(yJ ) ) 1
H —2( ].2:].1w]log251)+2

®)

with 1 < j; < j, <], and the weights w; are chosen such that Z?:jl w; = Oand Zj:ijljwj =1.

3. DATA SETS AND WAVELET SPECTRUM OF UDP TRACES
3.1. Data Sets for the Study

The Internet traffic data sets in this study were retrieved from the Measurement and Analysis on
the WIDE Internet (MAWI) working group site that resides in Japan, and the Waikato Internet
Traffic Storage (WITS), University of Waikato, New Zealand. There are four data sets involved
in the study as shown in Table 1. ﬁbandﬁp are the global estimated Hurst parameters for byte
and packet counts, respectively. The estimated Hurst parameters in this table were obtained
using the wavelet estimator.

The MAWTI traffic repository records a collection of traffic data from WIDE backbone
networks, which is a Japanese academic network that connects universities and research
institutes. Our main data sets in the analysis herein were captured at Sample point-F between 18
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March 2008 and 20 March 2008 as part of a Day in the Life of the Internet project. The traces
were anonymized in their IP addresses and their payloads had been removed. The Sample point-
F started to operate in June 2006 substituted for Sample point-B that was operated from January
2001 to June 2006. The Sample point-B had 100Mbps bandwidth with an 18Mbps Committed
Access Rate (CAR), while the link for Sample point-F has over-provisioned bandwidth of
1Gbps, with 150Mbps CAR. In our study, the choice of the traces mawil, mawi2 and mawi3
represents morning, afternoon and night sessions. By utilizing this variation in time, we are able
to capture different behavior of the Internet traffic. We also chose them in such a way that
anomalies in the traffic traces during the observation time were minimized. See [17] and its
corresponding website (http://www.fukuda-lab.org/mawilab/) to assess the traffic
anomalies. All applications that employ UDP as their transport protocol have been filtered out
for the purposes of our study. In this case there are almost no anomalies found in the UDP-
based traffic traces, most of the detected abnormalities are TCP related attacks. In addition, the
UDP trace called wits was collected from the WITS archive. The trace used in this study was
called Auckland IX as it was taken at the end point of the University of Auckland, New
Zealand® in March 2008.

Table 2. Summary of the UDP traces data.

Trace Date Duration H, H,
mawil | 18 March 2008 9.00am-11.00am | 0.92 | 1.01
mawi2 | 19 March 2008 | 14.00pm-16.00pm | 0.99 | 0.96
mawi3 | 20 March 2008 | 19.00pm-21.00pm | 0.90 | 0.93

wits 28 March 2008 | 08.00am-10.00am | 0.89 | 0.72

3.2. Wavelet Spectrum of the UDP Traces and Hurst Parameter Estimation

The wavelet spectrum for all traces (i.e., mawil, mawi2, mawi3 and wits) in terms of byte
arrival counts are shown in Figure 1. The plots depict the log-scale diagram of the wavelet
spectrum, §;, as a function of scale j.As shown in Section 2.2., the statistic S; represents the
energy of the traffic trace concentrated at around a frequency range related to the scale j. In
Figure 1, the vertical line at each point signifies the confidence interval of S;at a given scale j
and a line that is fitted to the wavelet spectrum at large scales(in each trace) is the fitting line
that is used for estimating the Hurst parameter, H (i.e. the slope of the line).

In theory, a trace statistically exhibits LRD when 0.5 < H < 1 [13]. It can be seen in Figure 1
that the wavelet spectrum for all traces show consistency with long-range dependent structure
particularly at the coarse scale [18],[10]. The estimated Hurst parameter H,, for byte counts and
ﬁp for packet counts, for each data set is shown in Table 1. It is clear that the values of the H,
and the ﬁpfor all traces are larger than 0.5, yet smaller than 1. However, variability in
thespectrum, which is represented by a bumpy look of the wavelet spectrum, is clear. The non-
linier wavelet spectrum lines in the figure indicate the presence of non-stationary effects in the
traces. Because of these non-stationary effects, estimation of the Hurst parameters can be larger
than 1, for example as in the ﬁpofmawil trace. In the presence of the non-stationarity effects,
estimation may only be valid if they are taken in the coarse scales. Hence, in Table 1, the Hurst
parameters were estimated from the slope of the fitted lines from j=12 to j=16.

The sources of non-stationarity might be as a result of local mean-shifts in the traffic traces and
the presence of high frequency oscillation. For example, Figure 2 reports the magnitude

2http://wand.cs.Waikato.ac.nz
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fluctuations of the periodogram for all UDP traces.It can be noticed thatspikes are noticeable at
a range of frequencies. An empirical study in [5] shows that the bumpy look in the wavelet
spectrum starts to appear as soon asv > My,

LD plot mail (bytes) trace LD plat maredi2 (hytes) trace
34 a5
2 34
30 32
LU Wz
26 28
24 26
22
a3 10 15 a3 10 15
Octave | Octave |
LD plat mawyi3 (oytes) trace LD plat wits (bytes) trace
34
32
32
30
30
— — 28
W o 2]
26 26
24 24
a3 10 15 a3 10 15
Octave | Octave |

Figure 1.The log-scale wavelet spectrum of the traffic traces in the study in terms of byte
arrival counts. The plot depicts the log-scale wavelet spectrum, S;, as a function of the

scale j.

w 10" mawil (bytes) trace w107 mawi2 (bytes) trace
3
= 2 22
= =
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Figure 2.Periodogram of two hours UDP traces based on byte counts that arrive on a link
in 10ms time intervals.

In addition, due to the presence of the non-stationarity artifacts in the UDP traffic traces,
estimation the Hurst parameter of the LRD becomes a difficult task. Nevertheless, it is worth
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mentioning that a rather detailed analysis of time-series in the presence of non-stationary effects
including some statistical tools, were proposed and outlined in [19][20]. Given this limitation,
our focus in this paper is not specifically on the methods for estimating the H parameter, we
only use the available tools whenever they are necessary to produce the estimated Hurst
parameter, H. For example, the local analysis of self-similarity outlined in [20] can accurately
estimate the Hurst parameter for data that contains the non-stationarity elements.

In this study, the Hurst parameter estimation was carried out by firstly localizing the analysis of
the time-series into smaller blocks of data instead of utilizing the whole block of the time-series,
and then, His estimated by averaging those local Hurst parameters. The methodof local analysis
of self-similarity has advantage of washing-out the effects of the non-stationarity that are
present in the time-series. The Hurst parameter estimation and further discussions will be
elaborated in Section 4.

4. RESULTS AND DISCUSSIONS

This section covers the main results and some discussions of the study. It firstly focuses on the
marginal distribution characterization of the UDP traces. It is then followed by an analysis of
the wavelet coefficient statistics in the light of the quasi-whitening effect (mentioned in Section
2). Lastly, performance of the Hurst parameter estimation for different numbers of the vanishing
moments, Md,, and different scales will be discussed.

4.1. Marginal Distributions of the UDP Traces

Marginal distributions of the UDP traces in terms of byte and packet counts are analyzed by
means of empirical histograms for different aggregation levels. In order to represent a wide
range of aggregation levels, we have used aggregation levels of a = 1,2,---,10, that correspond
to aggregation times of 2¢ X 10ms. However, in Figure 3 and Figure 4 we only show empirical
histograms for the case of a = 3,4,6,7 that signify aggregation time, A, of 80ms, 160ms, 640ms
and 1.28s, respectively.

During the study, we tried different types of distribution models including the Negative
Binomial distribution as suggested in [22], the Weibull distribution and the Gamma distribution
[12] to be fitted to the marginal distributions of the UDP traces for both byte and packet counts.
However, we found that the Negative Binomial and the Weibull did not fit the real UDP traffic
marginal distributions very well for a wide range of aggregation levels. Thus, to account for the
non-Gaussianity marginal distributions, we utilized the Gamma distribution, which had been
considered to be a satisfactory model for traffic traces for both small and large aggregation
levels [12].

The fitted lines in Figure 3 and Figure 4 represent Gamma laws that are characterized by two
parameters: the shape parameter @ > 0 and the scale parameter .Probability density function
(pdf) of the Gamma law is defined as follows:

Y
Lep ) = 7525 (%) (5 (10)

where the T'(.) represents the standard Gamma function. Varying the shape parameter from
a=1 to a =400 corresponds to exponential to Gaussian law distributions. Hence, the
distance between I g(y) and Gaussian law is controlled by 1/a. To be specific, the skewness
of the I, g(y) is defined as 2 /N a and its kurtosis is espresed as 3 + 6/+/a. In contrast to this,
Gaussian has skewness=0 and kurtosis=3.
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The parameters of a; and f;correspond to the estimated value of aand fat an aggregation level
j, respectively. For each UDP traces, the parameterswere systematically estimated using the
maximum likelihood estimator (MLE) with 95% confidence interval.They are shown in Table 2
together with their estimated skewness and kurtosis. We also checked the closeness of the UDP
trace marginal distributions to the Gaussian law using the Kolmogorov-Smirnov test as shown
in right hand side of Table 2. The result is h = 1 if the test rejects the hypothesis that the
particular UDP trace under investigation has a Gaussian distribution at the 5% significance
level.
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Figure 3. Marginal distributions of the UDP trace mawi3 in terms of byte counts.
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Figure 4. Marginal distributions of the UDP trace mawi3 in terms of packet counts
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By analyzing Table 2, it can be concluded that the marginal distributions of the UDP traffic
traces in the study are shown to be non-Gaussian. It is also very interesting to see that increasing
the aggregation level may result in shifting the distribution towards the Gaussian distribution
(i.e., the skewness gets close to O and the kurtosis gets close to 3). However, due to data
limitations, it is not achievable in this study. On the other hand, the Kolmogorov-Smirnov test
plays an important role in confirming the non-Gaussianity characteristic.It is particularly useful
for the case of the mawi3 trace where estimation of the shape parameter, a, produces very large
values. Theoretically, a specific Gamma distribution with large value of a corresponds to the
Gaussian laws. It can be seen in the table, although the mawi3 tracesobey the Gamma laws
with very large values of the shape parameter (tend to move toward the Gaussian law), the
Kolmogorov-Smirnov test confirms that they cannot be categorized as Gaussian.

Table 2. Gamma distribution parameters and Gaussianity check for the UDP traces data

Trace a; Bj Skewness | Kurtosis Cllffc-k
mawil(byte) az; =5.40 B3 = 4335.6 0.86 5.58 h=1
a, = 6.41 Bs = 7307 0.79 5.37 h=1

ag = 7.96 Be = 23525 0.71 5.13 h=1

a; = 8.50 B = 44063 0.69 5.06 h=1

mawil(packet) | a3 =9.95 B3 = 13.69 0.63 4.90 h=1
a, =1244 | B, =21.89 0.57 4.70 h=1

ag =18.11 | Bs =60.16 0.47 441 h=1

a; =2019 | B, =107.93 0.45 4.36 h=1

mawi2(byte) a3 =438 | B3 =12339 0.96 5.87 h=1
a, =516 | B, =20947 0.88 5.64 h=1

ag =593 | Bg = 72862 0.82 5.46 h=1

a; =612 | B, = 141290 0.81 5.43 h=1

mawi2(packet) | a3 =9.55 B3 = 21.03 0.65 4.94 h=1
a, =1112 | B, =36.12 0.60 4.80 h=1

ag =13.63 | B¢ =117.85 0.54 4.63 h=1

a; =14.37 | B, =223.50 0.53 4.58 h=1

mawi3(byte) as; =9.89 s = 4383.7 0.64 491 h=1
a, =11.89 | B, =7294.5 0.58 474 h=1

as = 14.63 | Bg = 23715 0.52 4.57 h=1

a; =1547 | B, = 44834 0.51 4.53 h=1

mawi3(packet) | a3 =1645 | ;3 =12.80 0.49 4.48 h=1
a, =20.63 | B, =2040 0.44 4.32 h=1

ag =29.41 | B¢ =57.72 0.37 4.11 h=1

a; =32.60 | B, =103.29 0.35 4.05 h=1

wits(byte) az; = 3.51 5 = 8560 1.07 6.20 h=1
a, =412 B, = 14561 0.98 5.95 h=1

g = 6.15 Be = 39082 0.81 5.42 h=1

a; =797 B, = 60288 0.71 5.13 h=1

wits(packet) az; =7.78 Bs = 20.850 0.72 5.15 h=1
a, =10.35 . = 31.35 0.62 4.87 h=1

g =17.87 | B¢ =72.61 0.47 4.42 h=1

a; =22.86 | B, =113.49 0.42 4.25 h=1
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4.2. The Wavelet Coefficients Statistics

Theoretically, the correlation structure of the wavelet coefficientsdy (j,k)? are short-range
dependent at all scales 2/ provided that the non-bias requirementMy, > H + 0.5 is satisfied.
However, it should be noted that this condition is valid only for Gaussian process. It has been
shown that the UDP traffic traces in our study inherit the LRD characteristics (in Section 3.2) as
well as the non-Gaussian marginal distribution (in Section 4.1).This sub-section investigates the
statistical properties of the wavelet coefficients for the non-Gaussian long-range dependence
that appears from our UDP traffic traces. The statistics of the wavelet coefficients will be
observed through marginal distributions and the covariance structure for different number of
vanishing moments, Md,.

Figure 5 and Figure 6 present the estimated skewness and kurtosis of the wavelet coefficients
for different numbers of vanishing moments. Inorder to overcome the non-stationarity effects in
the traces, estimation of the skewness and kurtosis was performed by dividing the two-hour
UDP traces into 24 blocks (each of the mcorresponds to a 5 minute time interval). Then the
wavelet coefficients were obtained from Eq. 5 in Section 2, where the UDP traffic traces
samples substitute the function g(t).In this way, the focus of the study is on the local behavior
of the time series instead of the global one. Similar analysis for the traces that were distorted by
then on-stationarity effects was discussed in [20].The figures also show the estimation of the
skewness and kurtosis for different Mywith 95%confidence intervals.The confidence interval
arerepresented by vertical lines at each point.On the other hand, the horizontal red lines serve as
reference lines, i.e. the Gaussian skewness=0 and the Gaussian kurtosis=3.
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Figure 5. Estimated skewness of the wavelet coefficients for 2 hours UDP traces based on
bytecounts.My, = 2 represented by a line with *',My, = 3 represented by a line with '0, and

M,, = Srepresented by a line with square.

Looking at these figures, it can be clearly seen that the marginal distributions of the wavelet
coefficients for all UDP traces in the study are approaching the Gaussian lawat large scale, i.e.,
2/ — oo, It is noticeable that the skewness of the traces tends to converge to 0 while the kurtosis
of all traces decreases slowly to 3. The second important characteristic of the wavelet
coefficientsis that both the skewness and kurtosis of the traces, for different values of My, have
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tendencies to converge to a certain value at large scale. This is an indication that increasing the
number of vanishing moments of the mother wavelet does not affect the performance of the
wavelet estimator. This result is consistent with empirical studies shown in [23] andthis finding
confirms that for UDP traces data that possess the non-Gaussian LRD behavior, the wavelet
coefficients eventually becomes Gaussian only at large scale. Hence, it consequently verifies the
validity of the non-bias condition of the wavelet-based estimator used in this study.

The next observation concerns an important feature of awavelet estimator called the quasi-
whitening effect, which hasan impact on transforming the dependence structure of the
waveletcoefficients from long to short by increasing the degree of theMy,[24]. Theoretically, it
was stated that thewavelet transform with a higher degree vanishing moments willdisentangle
the dependence structure of the traffic from longdependence to become short dependence
irrespective of the marginaldistributions as long as My, > H + 0.5[24].Hence, the case for

My, = 1 was not used in the study.
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Figure 6. Estimated kurtosis of the wavelet coefficients for 2 hours UDP traces based on
bytecounts.My, = 2 represented by a line with "*', My, = 3 represented by a line with '0’, and
My, = 5 represented by a line with square.

Figure 7 provides the dependence behaviour of themawi?2 traces observed through covariance
of the wavelet coefficients. Although examinations were also carriedout for all other traces, due
to space limitations they are notshown here. The top part of the figure shows the covarianceat
scale j = 2 and the bottom part shows the covariance for scalej = 9, while the left column
depicts the covariance withMy, = 2 and the right column shows the covariance withM, = 5. It
can be observed that there is no significantimpact on the long range dependence structure either
at the smallscale j = 2 or the large scale j = 9. A careful look from left toright in the figure also
reveals that increasing the degree ofvanishing moments does not provide any impact on
decreasing thedependence structure. Therefore, the fact that thequasi-whitening effect appears to
be valid for Gaussianprocesses, it does not seem to apply for the non-Gaussian processeslike the
UDP traces in this study. This result is again in agreementwith previous work in [23].
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4.3. Performance of the Hurst Parameter Estimation

The Hurst parameter is estimated by employing methods outlined in Section 2.2, specifically
using Eq. (9). Various values of Myspanning from 2 to 5 were used in order to evaluate the
effect of increasing the number of vanishing moments of the mother wavelet towards the
performance of the Hurst parameter estimation. Results are also presented for different scale
regimes as can be seen in Table 3. Fine scalesare observed at range j; = 3to j, = 6, coarse
scales at range j; = 8 to j, = 12 and global scales at range j; = 3 to j, = 12.

The estimated Hurst parameter, H, and its variance, og, were taken from the local analysis of
the time-series.There are approximately7.2 x 10°samples of data (representing 2 hours of UDP
traces)that had been subdivided into 24 blocks. Thus, each block of data signifies 3.0 X
10*samples of data. The wavelet spectrum estimator was then applied for each block of this
data to estimate the Hurst parameter and the variance.
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Figure 7. Covariance of the wavelet coefficients for the mawi 2 traces. Top part: covariance at
scale j = 2,bottom part: covariance for scale j = 9. Left column: covariancewith My, = 2, Right
column: covariance withMy, = 5.

As can be seen in Table 3, a relatively small value of sample variance for different kinds of
time-series data and for a range value of M, indicates that the statistical discrepancy between
each block of data is fairly small. The only exception is for the case of the mawi?2 trace for both
byte and packet counts, where large values of its variance for different My, result in significantly
diverse sample means H. This is likely due to the statistical characteristic of the mawi2 traces
in away that the non-stationarity does not affect the global observation of time-series only, but
also distorts the time-series up to a small block of observations.

Evaluation of Table 3 clearly shows that for the non-Gaussian processes like UDP traces, there
may seem to be no difference in the performance of the estimated Hurst parameter H as well as
its varian, o, as the number of vanishing moments were increased. This can be linked to the
previous examination in Section 4.2., whereby setting the My to large values does not
contributeto transforming the dependence structure of the wavelet coefficients from long to
short.
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Inspection at several scales shows significant difference for H. This result agrees with common
analysis of the wavelet estimator for Internet traffic. See, for example in [25],[ 10]. However, the
coarse scale asymptotic analysis of the wavelet coefficients in Eq. (8) suggests that it is
necessary to confine the linear regression to estimating H only on the coarse scale. Comparing
H in the coarse scale of Table 3 to the previous estimation in Table 1, it is clear that global
analysis time-series gives an overestimate of the values for the Hurst parameter. For example,
for the wits traffic, in Table 1 the estimated H), = 0.89 and ﬁp = (.72 for byte arrivals and
packet arrivals, respectively, while local analysis in Table 3 only gives approximately Hj =
0.54 and ﬁp = (0.66 for byte counts and packet counts, respectively.

Furthermore, observation on local analysis UDP traffic in the coarse scale, i.e. between j; = 8
and j, = 12, shows that the estimated Hurst parameter values in Table 3 lie between 0.5 and 1.
This is again an indication that the UDP traffic under investigation statistically exhibits LRD.
Consequently, the LRD characteristics that has been proved to be existingin the UDP-based
Internet traffic has important implications on the performance, design and dimensioning of the
current network. See for example in [18].

Table 3. Sample mean and sample variance of H

Ml/) = 2 Ml[) = 3 Ml[) = 5
A og A oq A oq

mawil (byte)

(1,J2) = (3,6) 0.62 0.060 0.64 0.055 0.66 0.045

(1,J2) = (3,12) 0.63 0.050 0.65 0.060 0.64 0.050

(1,J2) = (8,12) 0.78 0.061 0.74 0.068 0.73 0.098
mawil (packet)

U1, J2) = (3,6) 0.63 0.026 0.65 0.024 0.65 0.020

U, j2) = (3,12) 0.63 0.034 0.64 0.036 0.63 0.032

(1,J2) = (8,12) 0.72 0.046 0.69 0.033 0.69 0.081
mawi2 (byte)

(1,J2) = (3,6) 0.51 0.007 0.50 0.009 0.52 0.008

(1,J2) = (3,12) 0.57 0.013 0.56 0.013 0.55 0.013

(j1,J2) = (8,12) 0.85 0.104 0.86 0.103 0.71 0.220
mawi2 (packet)

U1, J2) = (3,6) 0.58 0.009 0.58 0.008 0.59 0.008

U, j2) = (3,12) 0.63 0.013 0.62 0.011 0.62 0.011

U jz) = (8,12) 0.83 0.113 0.81 0.123 0.70 0.230
mawi3 (byte)

U1, J2) = (3,6) 0.55 0.012 0.58 0.021 0.58 0.016

(1,J2) = (3,12) 0.58 0.019 0.59 0.027 0.58 0.023

U, j2) = (8,12) 0.87 0.070 0.86 0.096 0.82 0.162
mawi3 (packet)

U1, J2) = (3,6) 0.58 0.007 0.59 0.009 0.59 0.008

U, j2) = (3,12) 0.61 0.012 0.61 0.015 0.61 0.013

U, J2) = (8,12) 0.85 0.067 0.84 0.093 0.84 0.143
wits (byte)

U1, J2) = (3,6) 0.62 0.003 0.64 0.002 0.62 0.001

U, j2) = (3,12) 0.59 0.002 0.60 0.001 0.60 0.001

U jz) = (8,12) 0.54 0.023 0.55 0.068 0.65 0.047
wits (packet)

(1,J2) = (3,6) 0.62 0.002 0.63 0.001 0.62 0.001

U, j2) = (3,12) 0.60 0.001 0.61 0.001 0.60 0.001

U, J2) = (8,12) 0.66 0.023 0.66 0.040 0.65 0.047
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5. CONCLUSIONS

Internet traffic traces that utilized the UDP transport protocol have been observed. In this work,
we investigated the performance of a wavelet-based estimator employed for the non-Gaussian
long-range dependent data.

It is evident that samples of UDP traffic that arrived on a link during 10ms time intervals taken
from various data sets exhibit non-Gaussian distributions for both byte and packet counts. A
careful examination through their marginal distribution properties showed that their
distributions are highly skewed to the left and well-modeled by the Gamma law for different
aggregation levels.

Evaluation of the wavelet coefficient marginal distributions for all UDP traces was done in
terms of estimated skewness and kurtosis for different numbers of vanishing moments, Mw- It
showed that for the UDP trace data that possess non-Gaussian marginal distributions, the
wavelet coefficients marginal distribution eventually become Gaussian at a large scale only.
However, increasing the degree of vanishing moments does not result in any impact on
decreasing the dependence structure of the wavelet coefficients. Therefore, the fact that the
quasi-whitening effect appears to be valid for Gaussian processes, it does not seem to apply for
non-Gaussian processes like the UDP traces in this study. As a result of this behavior, there may
seem to be no difference on the performance of the H as well as the o5 as the number of
vanishing moments were increased.Numerical simulations on the real UDP traffic traces
indicated that increase on the number vanishing moments of the wavelet estimator, did not
change the performance of the Hand the o significantly.

We close our conclusions with observations on local analysis UDP traffic in the coarse scale,
i.e. between j; = 8and j, = 12. It showed that the UDP traffic under investigation statistically
exhibits LRD behavior, where 0.5 < H < 1. Hence, the LRD characteristics that is present in
the UDP-based Internet traffic gives important implications on the performance, design and
dimensioning of the current network.
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