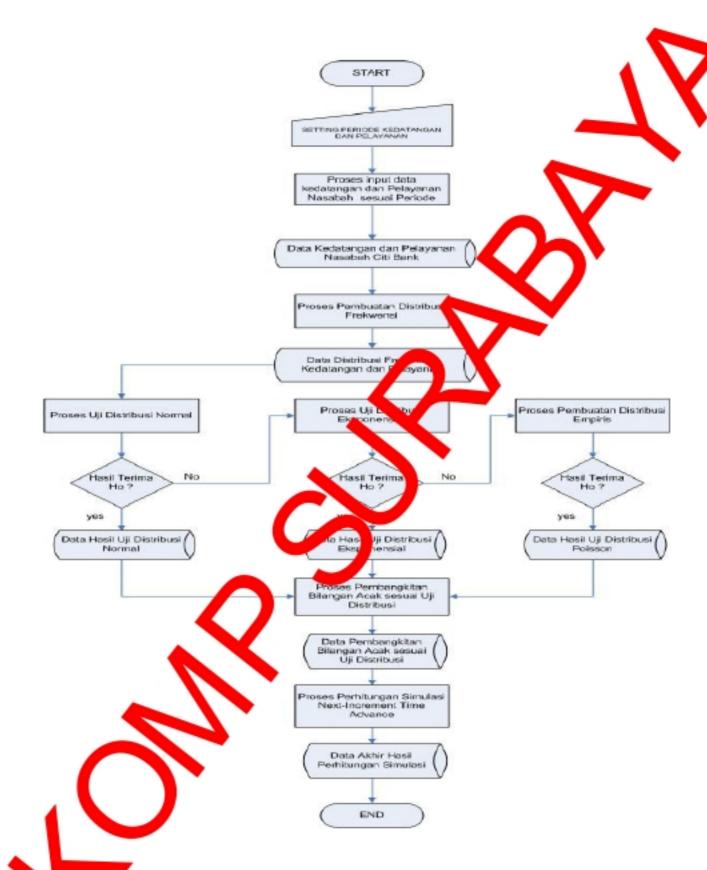
BAB III


PERANCANGAN SISTEM

Metodologi penelitian adalah cara penulis melakukan pendekatan menentukan suatu cara atau strategi yang tepat dalam membang watu aplikasi yang dapat membantu pihak CitiBank dalam menentukapatrate yang tepat untuk pelayanan nasabah. Dari pendekatan yang dilan ka ter but penulis ni dengan aturan atau mengembangkan beberapa obyek penelitian tersebu prosedur yang telah ditetapkan. Kemudian dat dan olek yang diteliti penulis tuangkan dalam bentuk aplikasi. Dengan apropasi mi pula penulis mengharapkan dapat membantu pihak CitiBank dalam men mparkan berapa jumlah pelayan nasabah (teller) untuk dapat menip kadan pilai ayanan kepada nasabah. Terdapat beberapa tahapan yang digunakan sebaga acuan kerja untuk mengembangkan aplikasi tugas akhir ini Tah b-tahap tersebut dapat dilihat pada penjelasan berikut.

3.1 Model Perce, ban an

Medel yang digunakan dalam pembuatan Program Simulasi ini yaitu: Dengan care mengempulkan informasi, pencarian data dan pengolahan data yang dikekut dangan cara merancang database dan membuat sistem. Dimana data yang dinerapkan dapat memberikan informasi yang nantinya bisa memberikan pelayanan yang sesuai dengan jumlah antrian nasabah, dengan menggunakan model Next-Event Time Advance. Berikut gambaran umum penyelesaian program simulasi menggunakan model Next-Event Time Advance.

3.2 Alur Penyelesaian

Gambar 3.1 Alur Penyelesaian Metode Next-Event Time Advance

Pada Gambar 3.1 diatas menggambarkan sebuah alur yang nantinya akan menjadi dasar acuan untuk mengembangkan program dan memecahkan masalah sesuai dengan kebutuhan yang diperlukan. Program yang telah dijalankan nantinya akan memuat data-data berpola kontinu dikarenakan data yang di uji

adalah data waktu, Nantinya penggunaan uji distribusi akan menggunakan uji normal, dan eksponensial. Penulis dalam mengembangkan program ini tidak menggunakan alat bantu apapun selain murni dari rumus-rumus yang ada li butu teori tentang statistik.

3.3 Prosedur Pengembangan

Metode penelitian yang digunakan dalam pembertan rog an Simulasi Strategi Penambahan Banyaknya Pelayanan Nasaka, ini mergikuti langkahlangkah seperti pada gambar 3.2 dibawah ini.

Gambar 3.2. Langkah Dalam Penelitian

3.1 Nentifikasi Masalah, Perumusan Masalah dan Tujuan

Seperti telah dijelaskan pada Bab 1, telah dirumuskan masalah bahwa upaya dalam menyelesaikan masalah tersebut perlu mempelajari perilaku data yang dijadikan objek utama dalam tugas akhir ini. Berikut beberapa data yang dijadikan acuan untuk membangun aplikasi simulasi ini:

- Menentukan data yang benar-benar dibutuhkan dalam program simulasi, data-data tersebut merupakan data yang diambil Penulis selama 1 bulan dan mengambil data yang sudah fix selama 5 hari.
- Mengamati event-event yang digunakan dalam program simulasi ini eventevent tersebut sangat berpengaruh dalam proses perhitungan sektu sehingga nantinya kita dapat menentukan sebaiknya berapa teller yang disiapkan untuk melayani para nasabah.
- 3. Menentukan kondisi dan batasan-batasan tertong capat digunakan untuk menetapkan penambahan pelayanar (aller) bada saat antrian terdiri dari berapa antrian. Pada penentuan kei tadak dipengaruhi oleh kondisi ekonomi dan budaya negara atau bahkar duma. Penulis juga menetapkan penambahan pelayanan (tellar) jika pada saat itu teller yang ada terlalu sibuk. Pada saat sistem berjalan diawal waktu dikondisikan pelayanan (teller) sudah dibukan (saat) pelayanan (teller).

Dari uraian di atas apat diperoleh gambaran kasar yang akan menjadi acuan dalam mendesain alta data dan hubungan antar data pada program, dan dari alur urutan birtas penuns juga dapat menentukan strategi yang tepat untuk penambahan pelayihan (teller) pada waktu yang dibutuhkan. Yang mana penentuan strategi tersebut hanya merupakan percobaan lewat peraga (alat) yang tidak papat digunakan sebagai acuan utama dalam pengembangan program nahinya.

Di dalam menentukan strategi penambahan pelayanan dengan menggunakan program simulasi ini tidaklah mudah karena yang mempengaruhi

program nantinya bukanlah sebuah nilai yang bersifat tunggal tetapi melibatkan banyak data yang bersifat deterministik dan probabilistik.

3.3.2 Mengumpulkan Data

Perusahaan jasa seperti perbankan utamanya CitiBank memiliki jem untuk melakukan pelayanan kepada nasabah lewat teller sangat tercatas anak tiap harinya, yang mana menurut aturan pelayanan dimulai iam (\$200 hingga jam 14:00 dengan ketentuan tidak ada waktu istirahat. Dalam pengar bilan sampel, Penulis hanya mengambil sampel selama 5 hari dengan dibantu ± 3 orang untuk melakukan pengamatan, karena keterbatasa waktu dar biaya, maka penulis membatasi dalam melakukan pengamatan kepangan sangat mahal.

Dari kondisi diatas terseba penulis itidak memperhatikan perilaku nasabah dan layanan yang melikukat tensaksi pada saat itu, sesuai dengan batasan masalah dan metode rang diberasieh penulis bahwa kejadian yang terjadi tanpa dibatasi oleh wakta Dari antuk pengembangan pembuatan program simulasi ini tidak memperhitu gan wasau kejadian yang memiliki antrian padat maupun kejadian yang tersem liki antrian padat.

Data-data ang dibutuhkan dan yang harus didapatkan untuk mendukung pengemban an program simulasi ini adalah sebagai berikut :

I saat pertama dibuka.

Me pakan data yang menginformasikan jumlah teller yang pertama dibuka untuk melayani nasabah pada awal dibukanya kantor Citi Bank.

Data waktu kedatangan nasabah.

Adalah informasi yang mencatat kedatangan nasabah bank pada waktu yang tidak ditentukan, informasi data ini digunakan untuk melihat antrian yang

akan terjadi mulai dari pertama bank dibuka untuk melayani nasabah hingga bank tutup dalam melayani transaksi nasabah melalui teller.

Waktu layanan pada nasabah.

Data ini memberikan informasi tentang lamanya nasabah bark padi saat dilayani, hal ini tidak termasuk data yang menginformasikat berapa besar transaksi yang terjadi pada saat nasabah yang bersangkuten dila ani.

Dari data ini dapat menentukan jumlah antrian yang akan terjadi dengan melihat kedatangan nasabah dan juga dapat dijadikas pankan kapan pihak bank membuka teller baru untuk pelayanan nasabah pada angian berikutnya. Melihat data-data yang dikumpukan diatas tersebut, maka dapat dikatakan awal dari proses pengembangan melalui pembuatan program sagulasi dimulai.

3.3.3 Menentukan Variabel

Dalam melakukan suatu coses pemecahan permasalahan yang menggunakan program cimulan, data-data yang diambil harus dapat terdefinisi dengan jelas. Karena vari data-data tersebut dapat digunakan dalam menentukan berapa banyak compana nasabah (teller) ditambah pada saat tertentu. Oleh karena itu identin asa terhadap data harus benar-benar hati-hati dan valid, maksulnya disini dentifikasi data-data tersebut harus benar-benar memiliki atabut milat yang mempengaruhi entitas yang berhubungan dan atribut-atribut program simulasi nanti.

Model pencatatan perubahan waktu saat Penulis melakukan pengamatan diselesaikan menggunakan metode Discrete-Event Simulation, sedangkan model next-event time advance disini akan menunjukkan bagaimana perubahan yang terjadi pada masing-masing event yang ada.

Berikut dapat dilihat entitas dan atribut yang mempengaruhi program simulasi yang akan dikembangkan oleh penulis :

- Waktu kedatangan nasabah (detik).
 (fungsi waktu, data bersifat probabilistik).
- Waktu layanan kepada nasabah (detik), tanpa me har jenis dan jumlah transaksi yang dilakukan.

(fungsi waktu, data bersifat probabilistik)

3.3.4 Pengolahan Data

Pada tahap ini dilakukan pekerolahan terhadap data yang diperoleh dari pengamatan, yaitu data permintan dari tahap pengamatan, yaitu data permintan dari tahap pengamatan, langkah-langkah yang dilakukan dalam pengolahan data adalah

- Mengelompokkan da der an distribusi frekuensi.
- 2. Menguji hipotesa d sa busi data.
- Membangkitka, bilangan random menurut hasil uji hipotesa distribusi data.

A Pagelompokkan Data Dengan Distribusi Frekuensi

Data di bawah ini adalah data antar kedatangan nasabah waktu 08.00-

Tabel 3.1 Data Kedatangan Nasabah Pkl 08.00-14.00

No	Data
1	230
2	229

No	Data
21	269
22	264

No	Data
41	196
42	140

No	Data
61	196
62	329

Tabel 3.1 Data Kedatangan Nasabah Pkl 08.00-14.00 (Lanjutan)

No	Data
3	339
4	263
5	324
6	177
7	308
8	224
9	208
10	182
11	305
12	356
13	335
14	317
15	359
16	181
17	211
18	300
19	283
20	270

No	Data
23	178
24	343
25	278
26	234
27	221
28	159
29	133
30	255
31	127
32	331
33	178
34	223
35	250
36	286
37	148
38	335
39	164
40	226

No	Data
43	174
44	304
45	325
46	291
47	317
48	190
49	279
50	234
51	132
52	29
53	288
54	124
-5	4
56	
3.	179
58	-01
5.	261
60	205

No	Data
63	232
64	245
65	253
66	149
67	73
68	2.
69	182
70	
Y	17
72	41
	253
74	216
75	361
76	240
77	297
78	274
79	178
80	268
81	150

Tabel 3.20 ta Dis. busi Frekuensi Kedatangan Nasabah

Batas Bawah	Batas Atas	Frekwensi (fi)
124	157	10
158	191	15
192	225	9
226	259	13
260	293	13
294	327	11
328	361	10

B Menguji Hipotesa Distribusi Data

Setelah melakukan perhitungan untuk membentuk distribusi frekuensi dengan rumus sturges diatas, maka selanjutnya kita melakukan pengujian terhadi pengujian terhadi pengujian distribusi diatas dibagi menjadi 2 yaitu:

- Untuk Uji Distribusi Normal digunakan Uji keselarasan Kolmog of Smirnov Normal.
- Untuk Uji Distribusi Eksponensial digunakan procelara an Kolmogorof Smirnov Eksponensial.

Adapun langkah-langkah pengujian distribusi at adalah:

- 1. Uji keselarasan Kolmogorof Smirnov, Langrahnya adalah:
 - a. Carilah nilai Xi (nilai tenga), untu masi g-masing data kelas.
 - b. Carilah nilai μ (rata-rata) dapat di lekati dengan \overline{X} . Dari rumus diatas, maka didapatkan \overline{X} seb sar 241.3 \approx 241.
 - c. Selanjutnya (a) nilar (simpangan baku atau standart deviasi) data dari sampel (a) Dida patkan simpangan baku sebesar 66.06 ≈ 66.

bel 3.3. Langkah Mencari X dan S dari Kedatangan Nasabah pada Pukul 08.00 – 14.00

	Bata Bawah	Batas Atas	Frekwensi (fi)	Nilai Tengah (Xi)	xi * fi	(Xi-X Bar)	(Xi-XBar)*2	fi * (Xi-Xbar)'2
I		157	10	141	1410	-100,32	10064,10	100641,00
	158	191	15	175	2625	-66,32	4398,34	65975,1
1	192	225	9	209	1881	-32,32	1044,58	9401,22
	226	259	13	243	3159	1,68	2,82	36,66
	260	293	13	277	3601	35,68	1273,06	16549,78

Tabel 3.3. Langkah Mencari X dan S dari Kedatangan Nasabah pada Pukul 08.00 – 14.00 (Lanjutan)

Batas Bawah	Batas Atas	Frekwensi (fi)	Nilai Tengah (Xi)	xi * fi	(Xi-X Bar)	(Xi-XBar) ²	fi * (i-Xbar)
294	327	11	311	3421	69,68	4855,3	55-1 ° 3
328	361	10	345	3450	103,68	10749 74	107495,4
	n =	81	$\sum_{i=0}^{n} (xi * fi)$	19547		$\sum_{i=0}^{n} fi(xi * xba.)^{2}$	353507,5

- d. Mencari nilai frekuensi kumulatif dari masing-pasing las.
- e. Mencari nilai S(X) dari masing-masing elas

Tabel 3.4. Proses Hitung Distribusi Namal Ladatangan Nasabah pada Pukul 08.00 14.00

Batas Bawah	Batas Atas	Frekwensi (fi)	Frex. Kumulatif	(X)	z	Normal Distribusi F (X)	F (X)- S (X)
124	157		10	0,12	-1,52	0,0643	0,059
158	191	15	25	0,31	-1,00	0,1587	0,15
124	157		34	0,42	-0,49	0,3121	0,108
158	101	3	47	0,58	0,03	0,512	0,068
192	225	,	60	0,74	0,54	0,7054	0,035
294	327	11	71	0,88	1,05	0,8531	0,023
328	361	10	81	1,00	1,57	0,9418	0,058

f. Perakhir cari nilai Z untuk masing-masing kelas.

Dapat dilihat pada tabel pada halaman sebelumnya, diterangkan bahwa nilai Z untuk masing-masing kelas. Dari nilai Z kemudian dicari tabel distribusi Normal dengan menggunakan tabel Normal Standart, perolehan

tabel distribusi Normal disebut dengan F(X). Nilai F(X) kemudian dikurangi dengan S(X), kemudian dicari yang paling maksimal.

g. Menetapkan α (taraf signifikansi)

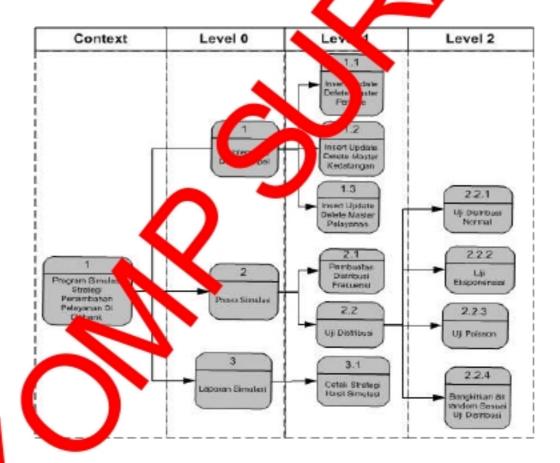
 $\alpha = 0.05$

Membuat daerah penolakan

W_{1-\alpha} =0.151 (dari tabel kolmogorof smirnov dengant = 1 da α =0.05)

- j. Dari tabel distribusi normal didapatkan nilai |F(X)-x X)| ang tertinggi (terbesar) kemudian bandingkan dengan nila dari tabel Kolmogorov Smirnov. Dengan tingkat kepercayaan x = 0,5 den an n =81, maka :
 - Jika T_{hitung} < W_{1-α} = maka Gaga tolak V₀ (H₀ diterima)
 - Jika T_{hitung} > W_{1-α} = maka **hak H₀** (ho ditolak)

Dari Kejadian dia as $T_{cang} = 0,150 < W_{1-\alpha} = 0,151$, jadi hasilnya **gagal tolak** H_0 (Diterima). H_0 a dapat disimpulkan bahwa kedatangan nasabah berdistrik usi Normal.


3.4 Data Flow Diagram

Seteleh putalis dapat mendefinisikan ruang lingkup dan dapat menentukan bagian-badian yang lkan diselesaikan menggunakan program simulasi. Kemudian penuli membuat alur diagram (DFD) dari model antrian Citibank dengan menggunakan metode Next Increment Time Advance. DFD yang penulis bangun tersahut merupakan acuan untuk membuat modul yang harus dikerjakan.

Sebelum data flow diagram dibuat pertama-tama yang harus dibuat adalah context diagram, tetapi sebelum membuat context diagram Penulis merasa perlu untuk membuat diagram berjenjang karena ini akan semakin memperjelas gambaran dari context diagram yang akan Penulis buat.

3.4.1 Diagram Berjenjang

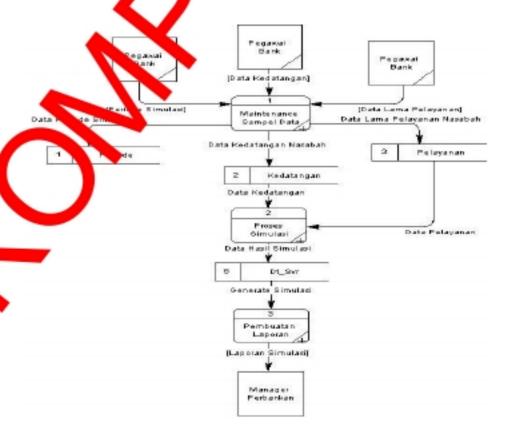
Diagram Berjenjang dibuat dengan tujuan untuk memberikan gambaran tentang data flow diagram yang dibuat, gambaran tersebut meliputi prosecuyang ada pada data flow diagram mulai level 0 sampai level turekh. Diagram berjenjang dari program simulasi strategi penambahan relayanan nasabah Citibank dapat dilihat pada gambar 3.3

nbar 3.3 Diagram Berjenjang Program Simulasi Strategi Penambahan Pelayanan Nasabah Citibank

4.2 Context Diagram

Context diagram adalah level yang paling awal dari suatu DFD, khusus pada context diagram tidak diberi angka, karena merupakan gambaran

4. Proses Laporan Simulasi.

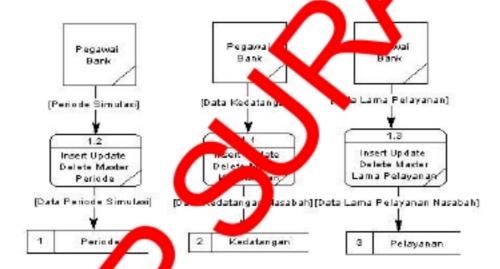

Proses ini digunakan untuk membuat laporan yang diberikan kepada pihak manager Citibank.

3.4.4 DFD Level 1 Proses Maintenance

Gambar 3.6 merupakan DFD level 1 dari proses *Maini nari e s.* mpel data. Terdapat 3 proses dan 3 database yang digunakan daam DFD level 1 ini, yaitu:

1. Proses Insert, Update, Delete Master Periode.

Proses ini digunakan untuk me-main enane, data periode yang meliputi kegiatan memasukan data (insert), mengubih data lama (update), dan menghapus data (delete), data periode berisi tentang periodi dan tanggal periode yang akan digunakan, jadi sebelum mengsi data radatangan, maupun pelayanan harus mengisi periode dulu.


Gambar 3.5 DFD Level 0 Program Simulasi Strategi Penambahan Pelayanan Nasabah

2. Proses Insert, Update, Delete master Kedatangan.

Proses ini kurang lebih mempunyai fungsi yang sama dengan proses maintenance data periode, tetapi yang disimpan adalah data sampe an rekedatangan nasabah Citibank.

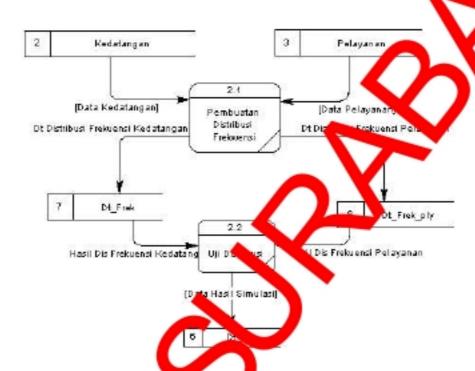
3. Proses Insert, Update, Delete master Pelayanan.

Proses ini kurang lebih mempunyai fungsi yang sama dagan proses maintenance data periode, tetapi yang disimpan adalah bata samp l Pelayanan nasabah Citibank.

G. h. or 3.6 FD Level 1 Proses Maintenance

3.4.5 DFD Proses Simulasi

F da gambur 3.7 adalah DFD level pertama pada proses simulasi.


Terdajat 2 proses pada level ini yaitu :

Ses pembuatan Distribusi Frekuensi.

Proses ini digunakan untuk membuat distribusi Frekuensi dari data sampel kedatangan dan pelayanan, yang kemudian nantinya digunakan data tersebut akan digunakan untuk Proses Uji Distribusi, dari proses ini akan dihasilkan tabel Dt_FREK dan Dt_FREK_PLY.

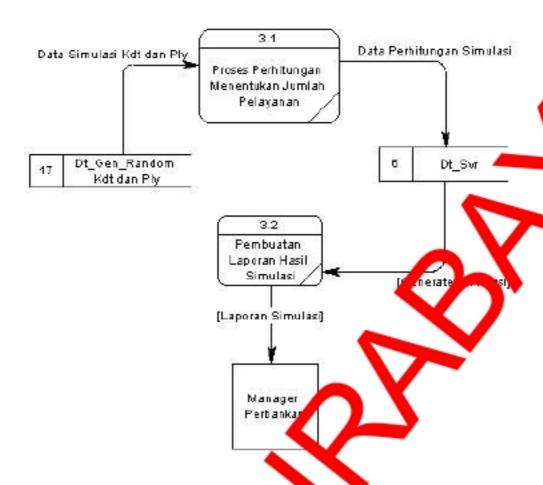
Proses Uji Distribusi.

Proses Uji Distribusi ini digunakan untuk mengetahui pola data sampel apakah sesuai dengan Distribusi yang ditetapkan, yaitu : Distribusi Yorm L. dan Distribusi Ekponensial.

Gamba 7 DF Level 1 Proses Simulasi

3.4.6 DFD Level Proses embuatan Laporan

Pada gambar . 8 norupakan DFD Level 1 proses pembuatan laporan.


Terdapat 2 r . . . va la level ini yaitu :

Prose perhitun an menentukan jumlah Pelayanan.

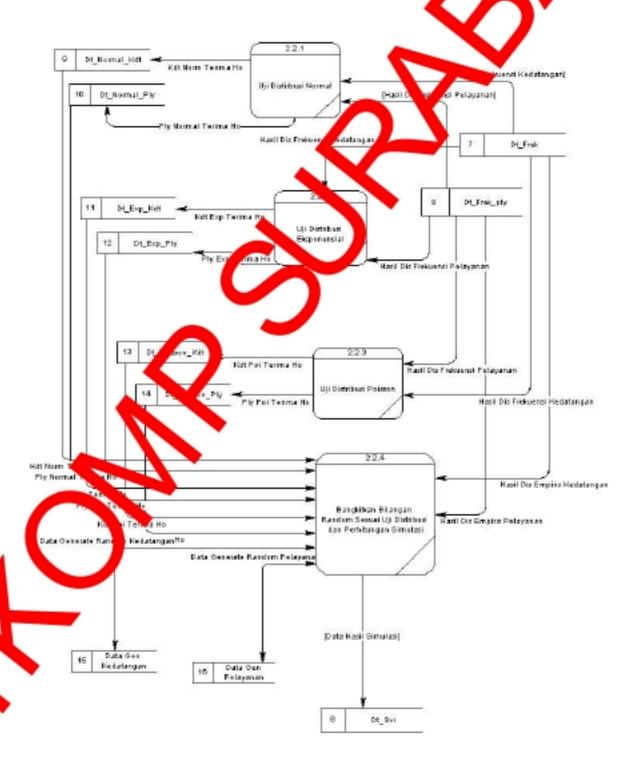
Pada proses ini dilakukan perhitungan simulasi, data didapat dari proses me abangkitkan bilangan random yang sesuai dengan distribusi yang telah biji. Data ini kemudian disimpan dalam tabel Dt_Svr

Proses Pembuatan Laporan Hasil Simulasi.

Proses ini digunakan untuk proses pembuatan laporan yang diambil dari dan ditujukan pada pihak manager.

Gambar 3.8 DFD Level Proses embuatan Laporan

DFD Level 2 Proses Vii Distr


apakan level 2 dan level terakhir dari DFD ini. Pada gambar § Proses Uji Distribusi ini ada 4 Proses, antara lain : Adapun proses dari D

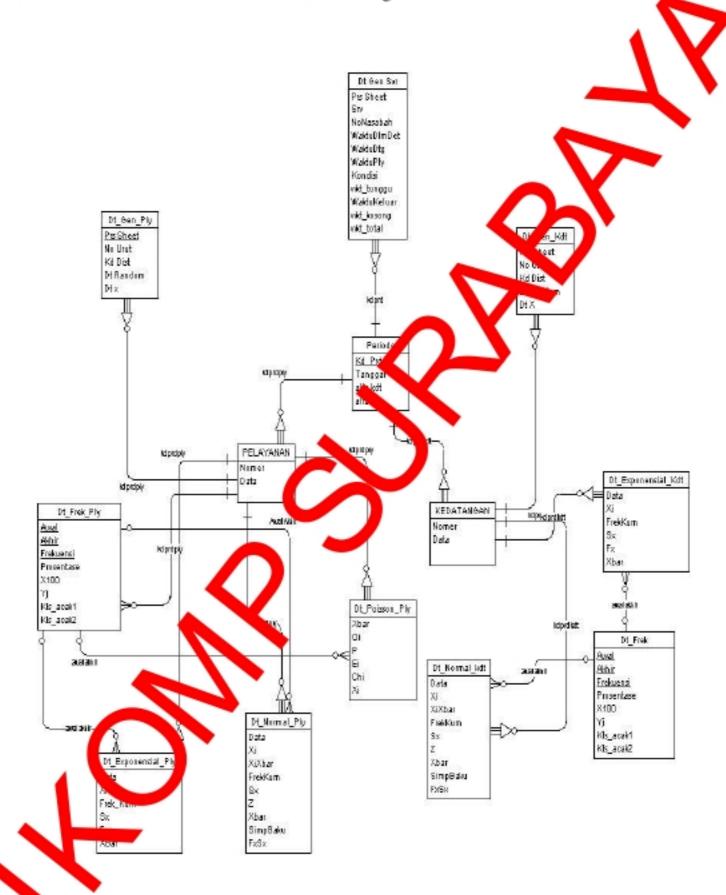
Tusi Vormal Proses Uji

ini digu akan untuk mengetahui apakah data sampel kedatangan dan diperoleh mempunyai distribusi normal ataukah tidak. pe ayan in Kenormalitasannya dibentuk dulu distribusi frekuensinya, baru kemulian diuji. Jika dalam pengujian tersebut ternyata data sampel diterima Ho nya maka data sampel tersebut berpola Normal. Data tersebut kemudian disimpan dalam tabel Dt_Normal_Kdt dan Dt_Normal_Ply untuk pelayanan. 2. Proses Uji Distribusi Ekponensial

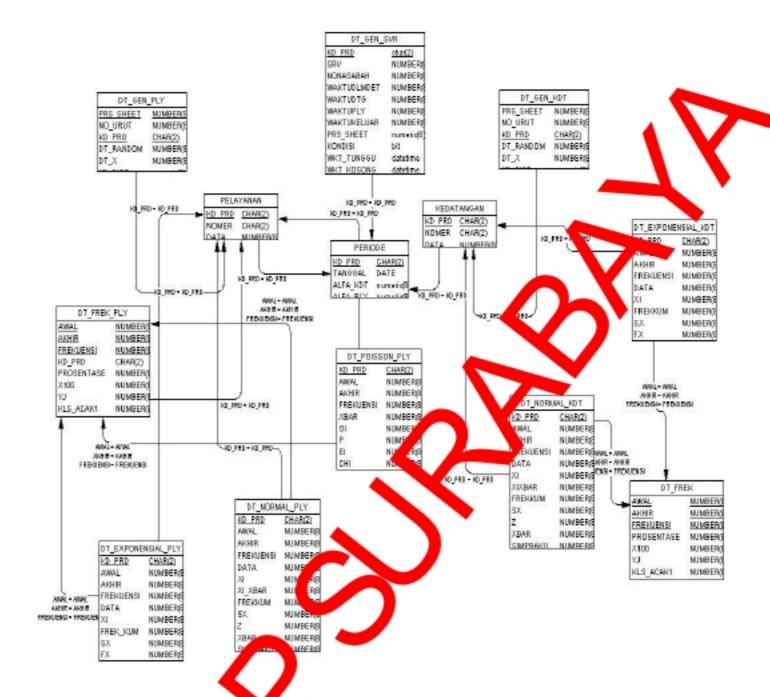
Proses ini digunakan untuk mengetahui apakah data sampel kedatangan dan pelayanan yang diperoleh berdistribusi Ekponensial atau tidak. Jika dalam pengujian tersebut ternyata data sampel diterima H0-nya maka data samp l tersebut berpola Ekponensial. Data tersebut kemudian disimpan dalam tabel Dt_Exp_Kdt dan Dt_Exp_Ply untuk pelayanan.

3. Proses Bangkitkan Bilangan Random Sesuai Uji Distribusi

Gambar 3.9 DFD Level 2 Proses Uji Distribusi


Proses ini digunakan untuk membangkitkan bilangan random sesuai dengan hasil Uji yang telah dilakukan, yaitu: Uji Distribusi Normal, dan Ekponensial. Bilangan dibangkitkan bila salah satu data sampel yang diuji mahanan i pengujian, dan apabila ada data yang memenuhi semua uji maka akan dibandingkan hasil uji ke dua Uji distribusi tersebut, dengan memilih nilai yang paling mendekati nilai *Kolmogorof Smirnov Normal* bera distribusi Normal, dan *Kolmogorof Smirnov Eksponensial* bagi Kistribusi ksponensial. Setelah dilakukan pembangkitan bilangan random maka hasil bilangan random akan dilakukan perhitungan simular, antuk memperoleh kesimpulan akhir. Data random dan hasil simulasi dicharan dalam tabel Data_Gen_Kdt, Data_Gen_Ply.

3.5 Entity Relationship Diagram (F. c., agram)


Entity Relationship Diagrat merupakan suatu desain sistem yang digunakan untuk meneresertasikan, menentukan dan mendokumentasikan kebutuhan kebutuhan ketik sistem pemrosesan database. ERD juga menunjukkan hubungan antar vas 1 ERD terdiri dari Conceptual Data Model (CDM) dan Physical Lata Model (CDM). Pada gambar 3.10 menunjukan CDM dan gambar 3.11 PDM vri program simulasi.

Model pala sistem dipakai untuk menandai obyek amatan pada sistem. Sedangkan istilah atribut pada digunakan untuk menandai suatu sifat dari entiti tersebut. Sebuah Physical Data Model (PDM) akan menggambarkan secara detail rancangan struktur basis data dan merupakan hasil generate dari Conceptual Data Model. Adapun CDM dan PDM yang dirancang untuk program simulasi layanan

nasabah pada citibank menggunakan metode Discrete-Event Simulation dengan model Next-Event Time Advance adalah sebagai berikut:

Gambar 3.10 ERD-CDM

Gambar 3.11 ERD-PDM

3.6 Struktur Database

Strukt Database merupakan penjabaran dan penjelasan database terstiru, dari rungsi masing-masing table sampai masing-masing field yang ada da um table. Adapun struktur database yang telah dibuat berdasarkan Entity Relationship Diagram, yaitu:

1. Nama : Periode

Primary key : Kd_Prd

Fungsi : Menyimpan Data Periode Simulasi

Tabel 3.5 Periode

Nama Kolom	Tipe Data	Ukuran	Status	Keterangan
Kd_Prd	Alpha	2	PK	Priode Simulasi
Tanggal	Date	-		Tanggal Periode Simulasi
Alfa kdt	Number			Menunjukkkan alfa ke une kitkan
Alfa ply	Number			Menunjukkan alfa ply y ng oangaitkan

2. Nama : Kedatangan

Primary key : kd_prd

Fungsi : Menyimpan data samp / ke atang n nasabah

Tabel 3.6 Ket tang.

Nama Kolom	Tipe Data	V aran S	ta ^r s	Keterangan
Kd_Prd	Alpha	2	ĸ,Fk	Priode Simulasi
Nomer	Number			Nomer Urut
Data	Number			Data Sampel Kedatangan Nasabah

3. Nama Pelaya an

Primary key : I'd_pld

Fungsi Menyimpan data sampel pelayanan nasabah

Tabel 3.7 Pelayanan

	Na va Kolom	Tipe Data	Ukuran	Status	Keterangan
J	Kd_Prd	Alpha	2	PK,Fk	Periode Simulasi
١	Nomer	Number	-		No urut
	Data	Number	-		Data sampel simulasi

4. Nama : Dt_Frek_Kdt

Primary key : kd_prd, Awal, Akhir

Fungsi :Menyimpan hasil perhitungan distribusi frekuensi

Kedatangan Nasabah

Tabel 3.8 Dt_Frek_Kdt

Nama	Tipe Data	Ukuran	Status	Keterangan
Kolom				
Kd_Prd	Alpha	2	PK,FK	Kode Periode Similasi Katangan Nasabah
Awal	Number	-	PK	Batas atas dan sebu b kala Batas bawat kari s buah elas
Akhir	Number	-	PK	Batas bawai, 'ari s ouah elas
Frekuensi	Number	-		Jumlah data yan sudah kelompokkan
Prosentase	Number	-		Nilai Progntase
X100	Number	-		Nilai X 90
Yj	Number	-		Nilai Yj
Kls_Acak1	Number	-		cena acak e 1
Kls Acak2	Number	-		Kela acak k 2

5. Nama : Dt_Frek_Ply

Primary key : kd_prd, A wal kn

Fungsi :Menyimpan hail erhitungan distribusi frekuensi

I ayar n Nasabah

Tabel 3.9 Dt_Frek_Ply

Nama Holom	Ti e Data	Ukuran	Status	Keterangan
Kd_Prd	Alha	2	Pk,FK	Kode Periode Simulasi Kedatangan Nasabah
Aw	N mber	-	PK	Batas atas dari sebuah kelas
Akh	Number	-	PK	Batas bawah dari sebuah kelas
Frek trasi	Number	-		Jumlah data yang sudah dikelompokkan
1. tase	Number	-		Nilai Prosentase
X10e	Number	-		Nilai X100
Vj	Number	-		Nilai Yj
K Acak1	Number	-		Kelas acak ke 1
Kls_Acak2	Number	-		Kelas acak ke 2

6. Nama : Dt_Normal_Kdt

Primary key : kd_prd

Fungsi : Menyimpan hasil perhitungan Uji distribusi Normal

Kedatangan Nasabah

Tabel 3.10 Dt_Normal_Kdt

Nama Kolom	Tipe Data	Ukuran	Status	Keterangan
Kd_Prd	Alpha	2	PK,FK	Kode periode simulasi dat ngan
Awal	Number	-	FK	Batas atas dari sahah ke
Akhir	Number	-	FK	Batas bawah ari se pah ka us
Data	Number	-		Data Kumuk of
Frekwensi	Number	-		Jumlah data yang udah kelompokkan
Xi	Number			Nilai Tah Hasil Atungan
Xi-Xbar	Number	-		Nilai X. likur Vbar
Frek_Kum	Number	-		Jumlah
Sx	Number	-		Alfa. X
Z	Number	-		Nilai
Fx	Number	-		Vi Cdr
X_Bar	Number			N i X_Bar
Simp_Baku	Number	-		Nila mpangan Baku Kedatangan
Fx_Sx	Number	-		. lai Absolut

7. Nama : Dt_Normal_Ply

Primary key : __prd

Fungsi Menyapan hasil perhitungan Uji distribusi Normal

Nasabah Nasabah

Tabel 3.11 Dt_Normal_Ply

Nan Volom R d	Tipe Data	Ukuran	Status	Keterangan
rd d	Alpha	2	PK,FK	Kode periode simulasi kedatangan
Awar	Number	•	FK	Batas atas dari sebuah kelas
Akhir	Number	-	FK	Batas bawah dari sebuah kelas
Di	Number	-		Data Kumulatif
Frekwensi	Number	-		Jumlah data yang sudah dikelompokkan
Xi	Number	-		Nilai Tengah Hasil perhitungan
Xi-Xbar	Number	-		Nilai Xi dikurangi Xbar
Frek_Kum	Number			Jumlah
Sx	Number	-		Nilai Sx

Tabel 3.11 Dt_Normal_Ply Lanjutan

Sx	Number		Nilai Sx	
Z	Number		Nilai Z	
Fx	Number	-	Nilai Cdf normal	T
X_Bar	Number		Nilai X_Bar	,
Simp_Baku	Number	-	Nilai Simpangan Baku Ke	-
Fx_Sx	Number	-	Nilai Absolut	

8. Nama : Dt_Ekponensial_Kdt

Primary key : Kd_prd

Fungsi : Menyimpan hasil perhitungan Ui stribusi Exponensial

Pelayanan Nasabah

Tabel 3.12 D. Ekponen al_Kdt

Nama Kolom	Tipe	Ukuran	Statu	Keterangan
	Data			
Kd_Prd	Alpha		Pk,Fk	Kode periode simulasi kedatangan
Awal	Number		FK	Batas atas dari sebuah kelas
Akhir	Numbe.	7-	FK	Batas bawah dari sebuah kelas
Data	Nyber			Data Kumulatif
Frekwensi	Nu v			Nilai dari Frekuensi
Xi	Nun er	-		Nilai tengah
Frek_Kum	imba	• -		Nilai Kumulatif
Sx	Jumps	-		Nilai Sx
Fx	No ber	-		Nilai dari Cdf exponensial
X_Ba	umber	-		Nilai Rata-rata

9. Va na : Dt_Ekponensial_Ply

Primary key : kd_Prd

Fungsi : Menyimpan hasil perhitungan Uji distribusi Exponensial

Pelayanan Nasabah

Tabel 3.13 Dt_Ekponensial_Ply

Nama Kolom	Tipe	Ukuran	Status	Keterangan
	Data			A
Kd_Prd	Alpha	4	PK,FK	Kode periode simulasi kedat ngan
Awal	Number	-	FK	Batas atas dari sebuah kelas
Akhir	Number	-	FK	Batas bawah dari sebana
Data	Number	-		Data Kumulatif
Frekwensi	Number	-		Nilai dari Frekue
Xi	Number	-		Nilai tengah
Frek_Kum	Number	-		Nilai Kumulatif
Sx	Number	-		Nilai Sx
Fx	Number	-		Nilai dz Cdf pon s.al
X_Bar	Number	-		Nilai Rata

10. Nama : Dt_Gen_Kdt

Primary key : Kd_Prd

Fungsi : Menyimpan h sil perhitu gan Uji distribusi Normal

Pelayanar Nasah

Ta el 3.14 Dt_Gen_Kdt

Nama Ko h	Tip. Data	Ukuran	Status	Keterangan
Kd_Prd	Alpha	2	PK,FK	Kode periode
K	Number		PK	Kode distribusi
Prs S et	Number	-	PK	Seed
No_ u	Number		PK	No urut
Dt_Ran_om	Number			Nilai Random
Dt_X	Number	-		Data Hasil Random

11. Na a : Dt_Gen_Ply

mary key : Kd_Prd

Fungsi : Membangkitkan Bilangan random untuk data sampel

kedatangan.

Tabel 3.15 Dt_Gen_Ply

Nama Kolom	Tipe Data	Ukuran	Status	Keterangan
Kd_Prd	Alpha	4	PK,FK	Kode periode
Kd_Dist	Number	-	PK	Kode distribusi
Prs_Sheet	Number	-	PK	Seed
No_Urut	Number	-		No urut
Dt_Random	Number	-		Nilai Random
Dt_X	Number	-		Data Hasil Polom

12. Nama : Dt_Svr

Primary key : Kd_Prd, Prs_Sheet, Jmh_Server

Fungsi : Membangkitkan Bila gan pantuk data sampel

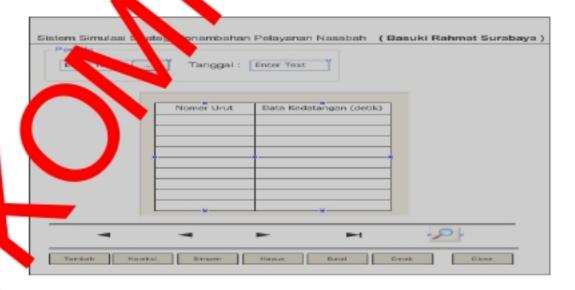
pelayanan.

Tab 3.1 Dt_Svr

Nama Kolom	Tipe P da	Uluran	Status	Keterangan
Kd_Prd	Alpha	4	PK,FK	Kode periode
Srv	Nober	-	Pk	Server Ke
Prs Sheet	Nu n		Pk	Seed ke
JmhServer	Num er			Jumlah Svr Yang Digenerate
WaktuDlmD	Time	-		Waktu Ply Dlm detik
WaktuPDta	This was	-		Eaktu Kdt
WaktuP'	Th. a	-		Waktu Ply
Wkt_t ggu	, me	-		Waktu Tunggu nasabah
Wkt_k ong	The	-		Waktu teller kosong
W ktuKe or	ime	-		Waktu Keluar
W _total	Time	-		Waktu total

3.7 Desain Input Output

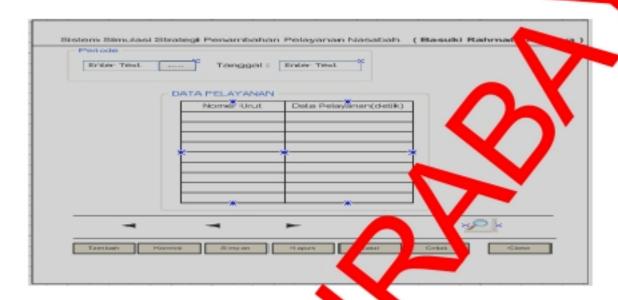
Desain input output adalah suatu rancangan form yang nantinya kurang lebih akan digunakan dalam pembuatan program. Adapun desain form tersebut antara lain:


3.7.1 Desain Form *Maintenance* Periode Simulasi

Seperti yang terlihat pada gambar 3.12, pada desain form ini terdapat beberapa tombol. Adapun tombol tambah mempunyai fungsi untuk medambah periode simulasi baru, tombol koreksi untuk mengupdate data periode tembol simpan untuk menyimpan data periode, tombol hapus untuk menghapus data, tombol batal untuk membatalkan transaksi, sedangkan tembol tetak untuk mencetak data periode. Tampilan desain untuk form mainta apre periode:

Gambar 3.12 Form Mainter ance Periode Simulasi

3.7.2 Desain Form M. Intendice data Kedatangan

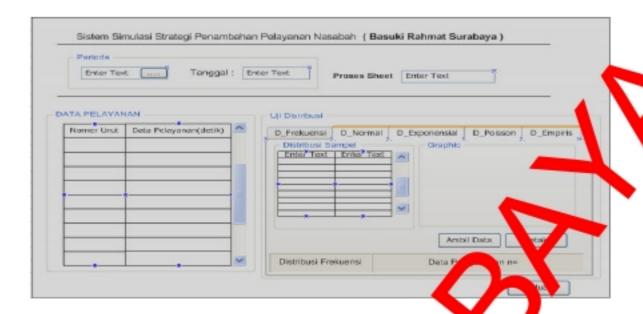


Gambar 3.13 Desain Form Maintenance Data Kedatangan

Seperti yang terlihat pada gambar 3.13, pada desain form ini terdapat lookup value yang berisi periode simulasi berikut tanggalnya, Grid data

kedatangan untuk mengisi data kedatangan, dan tombol-tombol seperti tambah, Koreksi, Simpan, Hapus, Batal, dan cetak seperti pada Form data periode.

3.7.3 Desain Form Maintenance Data Pelayanan



Gambar 3.14 Desain Form Main, pance Data Pelayanan

Seperti yang terlihat pada germa 3.14, pada desain form ini terdapat lookup value yang berisi periode simut poerikut tanggalnya, Grid data pelayanan untuk mengisi data penyangan, dan tombol-tombol seperti tambah, Koreksi, Simpan, Hapus, Batan an petakas perti pada Form data Kedatangan.

3.7.4 Desair For Uji Distribusi Frekuensi Kedatangan dan Pelayanan

Selerti yang terlihat pada gambar 3.15, penulis memberikan keterangan sama Intaran Oji Distribusi Frekuensi data Kedatangan dan data Pelayanan. Karen mempunyai struktur serta atribut yang sama antara keduanya. Komponen. Destin Form Uji tersebut meliputi: tombol data yang berfungsi untuk mengambil lata kedatangan dan data pelayanan untuk kemudian diproses sehingga membentuk distribusi frekuensinya.

Gambar 3.15 Desain Form Uji Dis Tecko nsi

3.7.5 Desain Form Uji Normal, Eksponersial Untuk lata Kedatangan dan Pelayanan

Gambar 3 6 Desain Form Uji Distribusi Normal, dan Ekponensial

ama anaka Uji Distribusi Normal, dan Exponensial untuk data Kedatangan dan data Pelayanan. Karena mempunyai struktur serta atribut yang sama antara keduanya. Komponen Desain Form Uji tersebut meliputi: tombol ambil data yang berfungsi untuk memproses data kedatangan maupun data pelayanan untuk di Uji

Kedua distribusinya, jika valid maka akan digenerate angka randomnya sesuai dengan proses seednya.

3.7.6 Desain Form Hasil Simulasi

Pada gambar 3.17 adalah desain form untuk form hasil simulasi. Pada form ini dijelaskan tentang perhitungan kedatangan dan pelayaran menungga diperoleh gambaran tentang kinerja pelayaran besatah, waktu menunggu nasabah, serta rata-rata waktu kedatangan dalam 1 km partama.

Sambar 3.17 Desain Form Laporan Hasil Simulasi