
Pertanika J. Sci. & Technol. 29 (2): 837 - 861 (2021)

ISSN: 0128-7680
e-ISSN: 2231-8526

SCIENCE & TECHNOLOGY
Journal homepage: http://www.pertanika.upm.edu.my/

Article history:
Received: 18 July 2020
Accepted: 20 October 2020
Published: 30 April 2021

ARTICLE INFO

E-mail addresses:
pantja@dinamika.ac.id (Pantjawati Sudarmaningtyas) 
rozlina@ump.edu.my (Rozlina Mohamed)
*Corresponding author

© Universiti Putra Malaysia Press

DOI: https://doi.org/10.47836/pjst.29.2.08

Review Article

A Review Article on Software Effort Estimation in Agile 
Methodology

Pantjawati Sudarmaningtyas1,2 and Rozlina Mohamed1*
1Faculty of Computing, Universiti Malaysia Pahang, 26300 UMP, Gambang, Kuantan, Pahang, Malaysia
2Department of Information System, Universitas Dinamika, 60298 Surabaya, Jawa Timur, Indonesia

ABSTRACT

Currently, Agile software development method has been commonly used in software 
development projects, and the success rate is higher than waterfall projects. The effort 
estimation in Agile is still a challenge because most existing means are developed based 
on the conventional method. Therefore, this study aimed to ascertain the software effort 
estimation method that is applied in Agile, the implementation approach, and the attributes 
that affect effort estimation. The results showed the top three estimation that is applied 
in Agile, are machine learning (37%), Expert Judgement (26%), and Algorithmic (21%). 
The implementation of all machine learning methods used a hybrid approach, which is a 
combination of machine learning and expert judgement, or a mix of two or more machine 
learning. Meanwhile, the implementation of effort estimation through a hybrid approach 
was only used in 47% of relevant articles. In addition, effort estimation in Agile involved 
twenty-four attributes, where Complexity, Experience, Size, and Time are the most 
commonly used and implemented.

Keywords: Agile, effort estimation attributes, expert 

judgement, hybrid approach, software effort estimation 

INTRODUCTION

Software development projects widely 
use Agile software development method, 
especially Scrum methodology with iteration 
planning techniques. This is in accordance 
with the survey which showed that 94% of 
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respondents employ Agile, and 60% have more than three years of experience. Scrum is 
the most common methodology used by respondents’ organizations (58%), while the top 
Agile techniques are iteration planning (90%) (VersionOne.com, 2017). Besides, statistics 
showed that the success rate of Agile is two times more likely to succeed, and one-third 
less likely to fail than waterfall projects (Mersino, 2018). 

Based on a survey, it was found that 45% of IT projects transcend budget because it is 
not established according to the factual requirement (Bloch et al., 2012). The estimation 
of cost in software development is essential to avoid excessive costs. In general, the costs 
are based on effort estimation (Bloch et al., 2012). Therefore, effort estimation is a crucial 
part of the software development project.

The objective of this estimation process is to provide an approximation of the resources 
needed to complete a project, in order to deliver outputs in the form of products or services 
in accordance with the specified characteristics of functional and non-functional (Institute, 
2017). Estimates are usually internally generated and periodically conducted. Meanwhile, 
early effort estimation, schedule, and cost are a repetitive work to be compromised and 
reviewed between stakeholders to reach an agreement regarding the requirement of 
resources and time to complete the projects (Bourque & Fairley, 2014). 

The precision measurement of a single effort estimate is not straightforward; therefore, 
the value is better communicated in the interval. Although there is no connection between 
the implied effort intervals and confidence level, but there is estimator confidence of a 
possibility that the actual efforts will be within range (Jørgensen, 2016).

The estimate can be interpreted from the requirement of resources, such as people 
and tools (Bourque & Fairley, 2014). This effort is a composite of person and time, which 
indicates the number of thoroughly productive working hours necessary to get a work done. 
Also, the units of effort are typically stated in person-hours, person-days, person-months, 
and person-years (Trendowicz & Jeffery, 2014).

Agile substantially is quite different from the waterfall method in the manageability of 
software development. The collaborative and cooperative approach between all stakeholders 
is the main characteristic of the agile software development method that perform by 
involving users actively, empower the team to make decisions, capture requirements in 
lightweight and visual, focus on frequent delivery of products through developing small, 
incremental release, and iterate (Project-Management.com, 2019).

Following the characteristics of agile that focus on delivery products, effort estimation 
uses to determine the number of iterations to predict the date delivery project. In contrast, the 
other software development methodology uses effort estimation as a basis for calculating the 
cost. Thereby effort estimation remains the main challenge in agile software development 
projects because there were not yet commonly accepted standardized effort estimation 
techniques for agile software development. Therefore, this study aimed to review the 
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methods and approaches of software effort estimation, in order to ascertain the most 
appropriate method for Agile development.

This study was conducted to provide a basis for further development of effort estimation 
method to be used in Agile software development. Towards achieving the target as 
mentioned above, this paper was organized into five parts. Beginning with an introduction, 
followed by overview of effort estimation techniques, materials and methods, results, and 
discussion, as well as the conclusion. 

OVERVIEW OF SOFTWARE EFFORT ESTIMATION METHOD 

Currently, many software effort estimation methods are implemented in projects such as 
Constructive Cost Model (COCOMO), Function point Analysis, Source Line of Code 
(SLOC), SEER-SEM (Software Evaluation and Estimation of Resources-Software 
Estimation Model). Furthermore, they are implemented in Linear, Multiplicative, and 
Putnam Models, Brake Down Estimation, Artificial Neural Network, as well as Fuzzy. 
The existing methods are shown in Figure 1, and three researchers have classified them 
according to their perspective.

Figure 1. Existing Software Effort Estimation Method

The first researcher (Boehm, 1984) classified software estimation methods from the 
perspective of the technique used. Based on this, the classification was divided into seven 
categories, namely Algorithmic models, Expert Judgment, Analogy, Parkinson, Price-to-
Win, Top-Down, and Bottom-Up.
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The second researcher (Srivastava & Wadhwa, 2013) classified software estimation 
methods based on an algorithm.  From that perspective, four categories of software effort 
estimation were obtained, which are Algorithmic, Non-Algorithmic, Parametric, and 
Machine learning. Some popular methods in Algorithmic models include Function point 
Analysis, Source Line of Code (SLOC), SEER-SEM (Software Evaluation and Estimation 
of Resources-Software Estimation Model), Linear Model, Multiplicative Model, Putnam 
Model, and Constructive Cost Model (COCOMO). Furthermore, Analogy and Expert 
Judgment are part of Non-algorithmic models, while Brake Down Estimation is one of the 
methods in Parametric. In addition, the estimation methods that include Machine learning 
models are Artificial Neural Network and Fuzzy.

The third researcher classified software estimation methods by the data input type and 
the principle of estimation that was employed (Trendowicz & Jeffery, 2014). Based on 
this, the methods were classified into three categories, namely Data-driven, Expert-based, 
and Hybrid. The Data-driven has two groups, which are Proprietary and Non-proprietary. 
Furthermore, the Non-proprietary is divided into three classes, namely Model-based, 
Memory-based, and Composite. The Model-based consists of Parametric, Non-parametric, 
and Semi-parametric. 

Table 1 shows a summary of existing methods classification based on the above 
explanation. 

Table 1  
Existing Effort Estimation Methods Classification

Classification (Boehm, 1984) (Srivastava & 
Wadhwa, 2013)

(Trendowicz & 
Jeffery, 2014)

Algorithmic models √ √
Expert Judgment/Expert base √ √
Analogy √
Parkinson √
Price-to-Win √
Top-Down √
Bottom-Up √
Non-algorithmic √
Parametric √ √
Non-parametric √
Semi-parametric √
Machine Learning √
Data-driven √
Hybrid √
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Based on the previous research, this study classified software effort estimation methods 
based on three aspects, namely (1) estimation principle that is employed (2) estimation 
strategy that is applied, and (3) data that are required. In general, each of these aspects 
are divided into two parts. The estimation principle issue consists of algorithmic and non-
algorithmic. The facet of the strategy is divided into two types, namely Top-Down and 
Bottom-Up. While the data aspect indicates that some methods have a high dependency 
on historical data, but others do not. Figure 2 shows the classification that was used in this 
study and existing software effort estimation methods. 

Figure 2. Software Effort Estimation Classification

In the development, the problem in estimation is better resolved when using a 
combination of several elements, this model is called hybrid. A hybrid model can combine 
components in a different aspect, and also combine attributes in the aspect of itself. There 
have been no perfect single estimation methods, therefore it is more suggested to use 
multiple methods. The confluence amongst the estimates generated by distinct methods 
shows that the estimation is most likely accurate. In fact, the discrepancy between the 
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estimates indicate that the possibility has been the neglect of certain factors. Therefore, 
it is essential to determine the factors that cause the difference, and then reexamine to 
converge result to preferable estimates (Bourque & Fairley, 2014).

MATERIALS AND METHODS

The method of conducting the literature review was based on Kitchenham & Charters 
(2007) that comprised three main phases, which include planning, conducting, and 
reporting. Therefore, the development of the systematic literature review protocol in this 
study consisted of planning and conducting, as shown in Figure 3.

Figure 3. Systematic Literature Review Protocol

Planning

To achieve this research aim, the software effort estimation that is used in Agile project 
development needs to be known in advance. Next up is knowing how the estimation is 
implemented and what variables are involved. 

The planning stage is the formulation of research questions related to Agile effort 
estimation as follows: 
RQ#1: What kind of method is used for effort estimation in Agile?
RQ#2: How it works to implements estimation effort in Agile?
RQ#3: What are the attributes involved in the estimation of effort in Agile?

Conducting

The conducting phase comprises of three activities, namely search strategy, study selection, 
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and data synthesis. In contrast to data synthesis that is independent, the search strategy and 
study selection are each formed by two different activities. 

On search strategy, a term that is used is known as search strings. This phase also 
determines resources, where the search will be executed. This process can be conducted 
after search strings and resources are identified. The strings used in the process is “Agile” 
(“effort” OR “cost”) and “Estimation” (“technique” OR “model”).

The process was conducted by embedding the search strings on seven resources as 
shown in Table 2.

Table 2  
List of Resources

No. Source Name URL
1 IEEExplore www.ieeexplore
2 ACM Digital library https://dl.acm.org/
3 Google Scholar  scholar.google.com
4 Inspec https://digital-library.theiet.org/
5 ScienceDirect www.sciencedirect.com
6 SpringerLink www.springerlink
7 World Scientific https://www.worldscientific.com

The study selection involved two activities. The first activity was filtering the result 
of the search process based on inclusion and exclusion criteria. The second activity was 
to implement quality assessment criteria on the first result. 

The inclusion criteria consist of four aspects, which are publication year, the language 
used, the context of research assessed from title and abstract, and valid DOI. Meanwhile, 
the exclusion criteria is determined by two aspects, namely the type of work and kind of 
research. In this case, type of work may be in the form of a journal, conference proceeding, 
book, chapter, thesis, dissertation, or course material, while the kind of research consists 
of the study, literature review, comparative study, or survey. The inclusion and exclusion 
criteria are explained in Table 3.

After the first activity was performed, the next step was selection using quality 
assessment criteria. As seen in Table 4, the assessment criteria were derived from the 
research question. The relevant studies fulfilled the quality assessment criteria with an 
accumulated score value greater than 1.

Data synthesis is an activity to resume the selected studies evidence, in order to 
synchronize it with the research question. The primary purpose of this activity is to provide 
clear answers to the research questions.
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RESULTS AND DISCUSSION

Conducting Phase Result 

The result of the conducting phase from seven resources obtained 171 articles. The number 
of articles for each resource is shown in Table 5. Furthermore, the top three articles are 
from Google Scholar (30.99%), SpringerLink (28.07%), and IEEExplore (22.22%).

The inclusion criteria were implemented to obtain 118 articles and exclusion criteria 
to obtain 100. Table 6 shows the results of both. 

Table 7 shows the number of articles of each resource generated from the quality 
assessment criteria.

Inclusion Criteria Exclusion Criteria
Publication Year: 2009 – 2019 Type of work: Book, Book Chapter, Thesis, 

Dissertation, course material
Language: English Kind of Research: Literature Review, 

Comparative Study, Survey, Report
Title or Abstract: Contains search string
DOI: valid DOI

Table 3  
Inclusion and Exclusion Criteria

Table 4  
Quality Assessment Criteria

ID Question (Q) Answer/
Score Points

RQ#1 Does the study discuss the kind 
of technique that used to estimate 
effort in Agile?

Yes	 | Partially       | No /
   1	 |     0.5	         | 0 

RQ#2 Does the study explain the 
approach to implements the 
estimating effort methods in Agile?

Yes	 | Partially       | No / 
   1	 |     0.5	         | 0 

RQ#3 Does the study declare attributes 
affecting the estimating of effort in 
Agile?

Yes	 | Partially       | No / 
   1	 |     0.5	         | 0 
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Table 5  
Result Conducting Phase

No. Source Name URL Number of 
Articles

1 IEEExplore www.ieeexplore 38
2 ACM Digital library https://dl.acm.org/ 15
3 Google Scholar  scholar.google.com 53
4 Inspec https://digital-library.theiet.org/ 1
5 ScienceDirect www.sciencedirect.com 14
6 SpringerLink www.springerlink 48
7 World Scientific https://www.worldscientific.com 2
TOTAL 171

Table 6  
Result of Inclusion and Exclusion Criteria

No. Source Name URL
Number of Articles

Inclusion 
Criteria

Exclusion 
Criteria

1 IEEExplore www.ieeexplore 37 33
2 ACM Digital library https://dl.acm.org/ 15 15
3 Google Scholar  scholar.google.com 11 5
4 Inspec https://digital-library.theiet.

org/
1 0

5 ScienceDirect www.sciencedirect.com 13 12
6 SpringerLink www.springerlink 40 34
7 World Scientific https://www.worldscientific.

com
1 1

TOTAL 118 110
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Data Synthesis Phase Results

Effort Estimation Method that Implemented in Agile. According to the relevant articles, 
effort estimation method that is implemented in Agile can be classified into four, which 
are Expert Judgement (EJ), Algorithmic (A), Machine Learning (ML), and Statistic (St). 

Table 7  
Result of Quality Assessment Criteria

No. Source Name URL
Number of 

Articles

1 IEEExplore www.ieeexplore 16
2 ACM Digital library https://dl.acm.org/ 6
3 Google Scholar  scholar.google.com 4
4 Inspec https://digital-library.theiet.org/ 0
5 ScienceDirect www.sciencedirect.com 5
6 SpringerLink www.springerlink 7
7 World Scientific https://www.worldscientific.com 0
TOTAL 38

Figure 4. Distribution of Software Effort Estimation Method in Agile
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Figure 4 shows the distribution of effort estimation method applied in Agile. From 
the relevant articles, most of them (87%) clearly stated the method that was used, and the 
rest (13%) did not describe the method. The top three estimation methods were Machine 
Learning (37%), Expert Judgement (26%), and Algorithmic (21%).

Expert Judgement Method. All the Expert Judgement method implemented in Agile is 
based on Planning Poker. Planning Poker is a group of estimation technique recommended 
for agile software development. The group discussion in this technique is assumed to 
provide higher accuracy and reduce excessive optimism which is the characteristic of expert 
judgment-based methods, although there is little empirical evidence about it. Mahnič and 
Hovelja (2012) conducted a research to fill the gaps by comparing the estimation effort 
based on the same user stories of the beginner groups and expert groups. The comparing 
result showed that the people involved in the group estimation process had the expertise, 
therefore the optimism bias arising from group discussion was diminished. 

Lenarduzzi et al. (2015) stated that the estimation efforts conducted by the developers 
had higher accuracy than those achieved through measuring the functional size. Besides, 
estimation accuracy in Scrum cannot improve with the help of SiFP and IFPUG Function 
Points because of weak predictive power. 

The two research results above showed that the expertise of professionals in software 
development companies is the primary aspect that influences the accuracy of estimation 
through Planning Poker. Furthermore, López-Mart´ınez et al. (2017a) strengthened the 
statement by conducting a research that proved the existence of dissent between Scrum 
experts and beginners on the following factors, namely experience, time, effort, priority, 
and user stories value. From the five factors, experience and time have differences in 
opinions, while effort and priority have similar opinions.  For the user stories value factor, 
many people doubted considering it as necessary, and some did not apply this factor in the 
planning phase. In line with this, the industry is likely not to consider this factor.

Although former research showed the existence of different opinions between Scrum 
experts and beginners, Chatzipetrou et al. (2018) showed that beginners were more engaged 
with the Planning Poker than estimates. During the Planning Poker activity, the beginners 
are more interested and involved. This showed that estimation with Planning Poker is a 
fun activity.

The user story is measured with relative value known as Story points (SP) that are 
commonly used as the base of calculation in the Planning Poker. Furthermore, Zahraoui and 
Idrissi (2015) improved the accuracy of effort and time estimates by proposing Adjusted 
Story Point (ASP) measure instead of SP to calculate the total effort of a scrum project. 
ASP used three adjustment factors, which are Priority Factor (PF), Story Size Factor (SF), 
and Complexity Factor (CF). Unfortunately, the use of ASP is not yet applicable to reel 
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scrum projects, therefore, further research is needed to improve the proper values of Story 
Point Adjustment Factors (SPF).

Although Planning Poker has a lot of benefits, the result was relying on observation 
experts. To overcome these issues, López-Martínez et al. (2017b) proposed a new model 
to improve Planning Poker by estimating the complexity and importance of user stories 
using Bayesian Network. Even though it showed good results primarily to facilitate 
newbie developers in deciding when to estimate user stories, this model still needed expert 
knowledge to build a Bayesian Network. 

López-Martínez et al. (2018) validated the model that was built on previous studies 
using the Bayesian network that considered user stories based on its complexity and the 
level of importance. The validation result showed that effort estimation from professionals 
had a higher degree of correlation than beginner’s estimates. This indicated that factors in 
the real-world application were also considered in the proposed model. Despite showing 
promising results, the model needs to be tested on a whole real project. Besides, it needs 
a mobile application development to ease its implementation. 

Tanveer et al. (2017a) proposed an innovative hybrid method that incorporated expert 
knowledge and changes analysis to impact the process of estimation. This hybrid method 
was furnished by Tanveer et al. (2018) with a prototype tool built based on the previous 
framework. That hybrid method can improve the effectiveness of effort estimates.

Moharreri et al. (2016) complemented manual PP with an automated estimation through 
extracted Agile story cards and their actual effort time. The Auto-Estimate was developed 
by comparing alternate methods like Naive Bayes, Random Forest, J48, and Logistic 
Model Tree (LMT), whereas the better result was from the combination of J48+PP, J48, 
and LMT+PP.

Algorithmic Method. The algorithmic effort estimation method in Agile software 
development consists of the COSMIC, phase-wise algorithm, Function Point (FP), and Use 
Case Point (UCP). This part explains the relevant articles that implement the algorithmic 
estimation method. 

COSMIC was proposed by Desharnais et al. (2011) to improve the guess estimate 
in Agile Project Management (APM). A new procedure was proposed that was built by 
consolidating COSMIC measurement method at the micro-level (User Stories) and the 
quality of the documentation for functional analysis deployment. Their study showed that 
this approach could  help the planner to clearly understand why the global effort changed 
by the time.

The Phase-wise algorithm to compute the estimation effort is proposed by Choudhari 
and Suman (2012a; 2012b) which conducted an empirical study through a questionnaire to 
determine efforts of maintenance to compute phase-wise effort estimation. Their postulate 
provided more realistic results and worthwhile in estimating maintenance effort, especially 
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in extreme programming based on maintenance environments. Therefore, refinement is 
still needed on the proposed technique.

Function Point (FP) is a part of algorithmic effort estimation classification use by Kang 
et al. (2010) as an addition to the story point for Agile projects systematic estimation. FP 
is used to minimize fluctuations of value estimation that is caused by relative values from 
the user story. Based on a comparison with traditional methods, the addition story point 
with FP showed better performance.

Excellent performance of FP was applied by Silas et al. (2017) to improve cost 
estimation in Agile development by proposing the hybridization of Class Responsibility 
Collaborators models with FP. The process can be boosted through the hybridization 
adoption of Class Responsibility Collaborators models with FP.

The Use Case Point (UCP) is an effort estimation method that is included in the 
Algorithmic classification. Khatri et al. (2016) implemented UCP, as an estimation method 
for Agile development in early stage by emphasizing on main complexity factors like 
technical and environmental. In this context, the use of the UCP can adequately estimate 
effort and improve the accuracy based on environment and technical factors under agile 
development.

UCP can also collaborate with the Scrum Framework by connecting between User 
Stories on the Product Backlog and Use Case on UCP as performed by Yuliansyah et 
al. (2018). In their study, UCP adjusted User Stories on Product Backlog by adding the 
transactions attribute on a user story, and thereby transforming it to Functionality. 

Popli and Chauhan (2013) proposed algorithmic estimation method by considering 
various factors to increase estimation accuracy of release date, cost, effort, and duration, 
especially for the project Scrum. The algorithm used Sprint-Point Based Framework for 
Agile and involved two factors, which are project and people-related factors that are proven 
to be effective and feasible. Although these factors show strong influence on the value 
of sprints point, in the future, other factors can be added that most affect the estimation. 

Machine Learning Method. Most of the relevant articles have the objective of improving 
accuracy through machine learning as a crucial issue in Agile effort estimation. Some 
involve the application of machine learning to resolve the metric size of the user story, 
which is commonly used as the base of estimation in Agile.

To improve the accuracy of Agile effort estimation, a combination of Neural Network 
was proposed by Panda et al. (2015a; 2015b) and Rao et al. (2018). While Malgonde 
and Chari (2018) applied predictive algorithms with ensemble-based approaches that 
consisted of Support Vector Machine (SVM), Artificial Neural Networks (ANN), K-Nearest 
Neighbors (KNN), and Decision Trees (DT).

Beside Neural Network, the accuracy of Agile effort estimation is also improved 
using metaheuristic algorithms. Khuat and Le (2017) devised a hybrid model to enhance 
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accuracy in Agile estimation by applying Particle swarm optimization (PSO) and artificial 
bee colony (ABC). Meanwhile, a novel formula for Agile software effort estimation based 
on velocity and story points is built from two metaheuristic algorithms mentioned before. 
However, this hybrid model needs further research on its implementation.

The accuracy in Agile software estimation is also improved using the ontology 
model. Adnan and Afzal (2017) proposed the model to build a knowledge base by saving 
significant tacit knowledge during project development. Various agents of the estimation 
system access the existing knowledge base and autonomously perform a suitable estimate 
for the success of future projects.

Commonly, Planning Poker (PP) is one of the effort estimations in Agile, and it is based 
on a user story that is measured by relative values. Some studies overcome this problem 
by proposing models that extracted keywords from user stories automatically. 

Abrahamsson et al. (2011) proposed an Agile effort prediction model that was based 
on user stories using keyword extraction tools. Meanwhile, Kowalska and Ochodek (2014) 
proposed a new approach through Semantic Web technologies. However, Choetkiertikul et 
al. (2018) introduced a novel combination of two robust deep learning architectures, which 
were long short-term memory and recurrent highway network to estimate story points. 

Chongpakdee and Vatanawood (2017) applied document fingerprints to retrieve the 
similar issues from the public repository of project management assets. In addition to the 
extraction of the keyword on a user story, Dragicevic et al. (2017) proposed to implement 
the Bayesian Network model. 

To handle frequent requirement changes in Agile software development, two studies 
had been conducted to resolve this issue. Bilgaiyan et al. (2018) applied Artificial neural 
networks (ANNs) in Agile effort estimation. Furthermore, the ANN-feedforward back-
propagation neural network and Elman neural network are used to keep track, maintain, and 
estimate the whole product. Meanwhile, Soares (2018) proposed to embed autoencoders 
in automatic software development effort estimation as text classification.

Even though all those studies provided many advantages, the models still need more 
massive datasets and other features because user stories are not only written in English, 
and sometimes influenced by developers’ demographics, story criticality, and other systems 
and framework aspects.

Improved Agile software estimation was conducted by proposing a model based on 
support vector regression (SVR) that is optimized by the grid search method (GS). In 
fact, empirical evaluation through the leave-one-out cross-validation method against 21 
historical Agile projects demonstrated that this model increases the performance of the 
SVR technique (Zakrani et al., 2018).

Statistic Method. To make the effort estimation method from the conventional life cycle 
in accordance with Agile development, Garg and Gupta (2015) proposed a new model 
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by implementing Principal Component Analysis (PCA) to ascertain the key attributes of 
the development cost. Their study found that the proposed methodology was suitable for 
Agile projects. 

After knowing software effort estimation methods and techniques applied in Agile, the 
next step is associating software effort estimation techniques with the agile characteristics. 

Table 8 shows Planning Poker is a software effort estimation technique that fulfillment 
the Agile characteristics. Although the Planning Poker suitable for the Agile characteristics, 
there needs to be further developed to overcome some weaknesses such as a high level of 
reliance on experts and estimation based mostly on guesses or experience.

Table 8  
Mapping software effort estimation method, technique, and characteristic of Agile

Method and Technique
Agile Characteristic

C1 C2 C3 C4 C5
EXPERT JUDGEMENT

Planning Poker √ √ √ √ √
ALGORITHMIC

Phase wise √ √
COSMIC √ √
FP √ √
UCP √ √

MACHINE LEARNING
Document Fingerprints
Bayesian Network
Classification
Ontology
Neural Network Families
Fuzzy Families
Metaheuristic Algorithm (ABC & PSO) √ √

STATISTIC
PCA
Impact Analysis

Note: 
C1: Involving users actively, C2: Empower the team to make decisions, C3: capture 
requirements in lightweight and visual, C4: focus on frequent delivery by developing small 
product, C5: incremental and iterate
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Approach for Estimating Effort in Agile. The implementation of software effort 
estimation could be achieved through two approaches, which are Non-hybrid and Hybrid. 
The non-hybrid approach applies a single effort estimation method, whereas the hybrid 
implements a combination of several methods. Half of the relevant articles used the non-
hybrid approach, 36.84% implemented the hybrid, while the rest did not mention the used 
approach. 

The non-hybrid approach consists of effort estimation methods such as Planning 
Poker, Phase Wise, COSMIC, Function Points, Use Case Point, Document Fingerprints, 
Bayesian Network, Text Classification, Ontology Model, and Principal Component 
Analysis. Meanwhile, the Hybrid approach contains method combinations between Expert 
Judgement and Statistic, Expert Judgement and Machine Learning, and Machine Learning 
and others.  Most of the hybrid approach is a mix of machine learning techniques. Table 
9 showed the methods and approach applied in Agile.

Attributes that Affect Estimating Effort in Agile. Volatility and change of customer 
requirement in Agile software development (ASD) is a difficult and challenging task in 
estimation effort. Generally, estimation in ASD is mainly based on user story (US) that 
measures by story points (Zahraoui & Idrissi, 2015). The US is commonly estimated using 
group processes that improve accuracy compared to individual process (Moløkken-Østvold 
& Jørgensen, 2004).

Most relevant articles (84.21%) explained the attributes used on effort estimation, and 
15.79% did not specifically mention the attributes. Based on the relevant articles, effort in 
Agile Software Development can be measured by user story, Use Case with sizing method 
story points, Use Case and function points. Nevertheless, the attribute of being used in the 
effort estimation can vary significantly. 

According to Table 10, there are twenty-four attributes used in effort estimation. The 
Agile estimation classification that is most employed is Statistic, followed by Expert 
Judgment and Machine Learning. These attributes are grouped by three criteria, namely 
the frequency of use, implementation on the effort classification, the recent frequency of 
use (last three years). Figure 5 shows the mapping of attributes based on those criteria.

The top five highest frequency attributes are Complexity, Story Points, Experience, 
Size, User Story, Effort, and Time. The implementation of attributes on the Agile effort 
classification showed that Complexity is implemented on all estimation classification. 
Whereas, Experience, Function Point, Size, Task, Time, User Story, Weight are attributes 
applied to three estimation classification. In the last three years, the most attribute that was 
used in Agile is Complexity, followed by Experience, Size, Effort, and Time. Also, the 
attributes that fulfilled all criteria are Complexity, Experience, Size, and Time.
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Approach Method Technique Author

N
on

-h
yb

rid

E
J

Planning Poker (Chatzipetrou et al., 2018),  
(López-Mart´ınez et al., 
2017a), (Lenarduzzi et al., 
2015),  (Mahnič & Hovelja, 
2012), (Zahraoui & Idrissi, 
2015)

A

Phase wise (Choudhari & Suman, 2012a), 
(Choudhari & Suman, 2012b)

COSMIC (Desharnais et al., 2011)
FP (Kang et al., 2010)
UCP (Yuliansyah et al., 2018)

M
L

Document Fingerprints (Chongpakdee & Vatanawood, 
2017)

Bayesian Network (Dragicevic et al., 2017)
Classification (Soares, 2018)
Ontology (Adnan & Afzal, 2017), 

(Kowalska & Ochodek, 2014)
S
t

PCA (Garg & Gupta, 2015)

H
yb

rid

E
J

S
t

EJ and Impact Analysis (Tanveer et al., 2017b),
(Tanveer et al., 2018)

E
J

M
L

Planning Poker and 
Machine learning 
(J48, LMT, Bayesian 
Network)

(Moharreri et al., 2016),
(López-Martínez et al., 
2017b), (López-Martínez et 
al., 2018)

M
L 
& 
M
L

ABC and PSO (Khuat & Le, 2017)
Adaptive Neuro-
Fuzzy Modelling, 
Generalized Regression 
Neural Network and 
Radial Basis Function 
Networks (RBFNs)

(Rao et al., 2018)

Combination of Neural 
Networks

(Bilgaiyan et al., 2018),
(Panda et al., 2015a),
(Panda et al., 2015b)

Combination two deep 
learning

(Choetkiertikul et al., 2018)

Combination of 
Machine Learning such 
as SVM, SVR, ANN, 
KNN, and DT.

(Abrahamsson et al., 2011), 
(Malgonde & Chari, 2018), 
(Zakrani et al., 2018)

Table 9  
Types of software effort estimation method and approach
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Complexity attribute is interpreted in different aspects, and most study understands it 
as the complexity of the project (Popli & Chauhan, 2014b; Garg & Gupta, 2015; Tanveer et 
al., 2016; Tanveer et al., 2017b; Bilgaiyan et al., 2018). Some research used it to represent 
technical complexity (Hamouda, 2014; Khatri et al., 2016; Yuliansyah et al., 2018). Also, 
environmental complexity is a part of the attribute that applies in two research (Hamouda, 
2014; Khatri et al., 2016). In fact, the attribute is considered to represent form, function, 
report, and requirements complexities (Dragicevic et al., 2017).

Many studies used story point attribute that represent itself (Popli & Chauhan, 2014a; 
Hamouda, 2014; Panda et al., 2015a; Panda et al., 2015b; Khuat & Le, 2017; Zakrani et 
al., 2018; Rao et al., 2018). Meanwhile, others apply this to show baseline story-points, 
estimated story-points (ESP), and unadjusted value of story-points (Popli & Chauhan, 
2014b). 

Experience attribute in most studies is used to measure the implementation experience of 
the developer or programmer (Tanveer et al., 2016; Tanveer et al., 2017b;  López-Mart´ınez 
et al., 2017a; López-Martínez et al., 2017b; López-Martínez et al., 2018; Malgonde & 
Chari, 2018). Other studies assess this attribute based on developer’s experience in making 
estimation (Tanveer et al., 2016; Tanveer et al., 2017b).

Some studies apply size attribute that represents the value of the user story (López-
Martínez et al., 2017b; López-Martínez et al., 2018), the code metrics for each affected class 
(Tanveer et al., 2018), and the team size (Garg & Gupta, 2015). However, other studies do 

Frequency of Use Implementation on Agile 
software effort classification

The recent frequency of uses (last 
three years)

Complexity
Experience

Size
Time

User Story

Effort

Story Points
Weight 

Function 
PointTask

Figure 5. Mapping of Agile software effort estimation attributes
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not detail the size attribute (Kang et al., 2010; Bilgaiyan et al., 2018; Malgonde & Chari, 
2018; Tanveer et al., 2018).

Effort estimation in Agile software development is mainly based on the user story 
attribute (Choudhari & Suman, 2012a; Choudhari & Suman, 2012b; Mahnič & Hovelja, 
2012; Popli & Chauhan, 2014a; Zahraoui & Idrissi, 2015; Chongpakdee & Vatanawood, 
2017; Choetkiertikul et al., 2018). In Abrahamsson et al. (2011), the user story was 
elaborated into keywords, namely length, and priority. 

Effort can be assumed as effort per person (Popli & Chauhan, 2014a) or actual effort 
(Panda et al., 2015a; Panda et al., 2015b). However, the attribute also represents itself 
without supplement (López-Martínez et al., 2017a; López-Martínez et al., 2017b; López-
Martínez et al., 2018; Malgonde & Chari, 2018).

Commonly, the attribute of time refers to the time it takes to complete a project (Popli 
& Chauhan, 2013;  López-Martínez et al., 2017a; López-Martínez et al., 2017b; López-
Martínez et al., 2018). In some studies, it is explicitly explained as Person-hours (Desharnais 
et al., 2011) or Working Hours (Dragicevic et al., 2017). 

CONCLUSION

Machine learning is the most common effort estimation method used in Agile software 
development, followed by Expert judgment and Algorithmic. However, machine learning 
has limitation in its implementation because it needs very large dataset that source from 
expert’s knowledge.

The implementation approach of the estimation effort in Agile software development 
does not differ between the non-hybrid and hybrid. The non-hybrid approach is applied 
on 50.00% of relevant articles and the hybrid is applied on 36.84%.

Twenty-four attributes are involved in Agile effort estimation, and those with the top 
five highest frequency of use are Complexity, Story Points, Experience, Size, User Story, 
Effort, and Time. Furthermore, the attribute that is implemented on all classification of 
the estimation is Complexity. Those with the highest frequency of use in the last three 
years are Complexity, Experience, Size, Effort, and Time. In addition, those that fulfilled 
all criteria are Complexity, Experience, Size, and Time.
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