UNIVERSITAS

Dinamiko

Monitoring Notifikasi Jadwal Pemberian Pakan Ikan Akuarium

Menggunakan ESP32 dan Buzzer Berbasis MQTT

KERJA PRAKTIK

Program Studi

S1 Teknik Komputer

Oleh:
FAIRUS FRANS MAULANA PAMBAYUN SUGIARTO

22410200006

FAKULTAS TEKNOLOGI DAN INFORMATIKA

UNIVERSITAS DINAMIKA

2025

Monitoring Notifikasi Jadwal Pemberian Pakan Ikan Akuarium

Menggunakan ESP32 dan Buzzer Berbasis MQTT

Diajukan sebagai salah satu syarat untuk menyelesaikan

Program Sarjana

Disusun Oleh:
Nama . Fairus Frans Maulana
Pambayun Sugiarto
NIM ;22410200006
Program : S1(Strata Satu)
Jurusan : Teknik Komputer

FAKULTAS TEKNOLOGI DAN INFORMATIKA
UNIVERSITAS DINAMIKA

2025

Tetap semangat meskipun dalam keadaan tidak baik- baik Saja

Laporan Kerja Praktik ini
Saya Persembahkan kepada Keluarga Saya Tercinta,
Dosen Pembimbing,

Dan Saya Sendiri

LEMBAR PENGESAHAN

Judul Kerja Praktik
Monitoring Notifikasi Jadwal Pemberian Pakan Ikan Akuarium

Menggunakan ESP32 dan Buzzer Berbasis MQTT

Laporan Kerja Praktik
oleh:
Fairus Frans Maulana Pambayun Sugiarto
22410200006

Telah diperiksa, diuji, dan disetujui

Surabaya, 20 November 2025

Disetujui
Dosen Pembimbing Penyelia,
3@ Dinarhika
Dr. lra Puspasari, S.Si., M.T Pauladie Susanto, S.Kom., M.T.
NIDN. 0710078601 NIDN. 0729047501
Mengetahui,

Ketua Program Studi S1 Teknik Komputer

Fakultas Teknolog' dan \n/or’n' (3
by UNIVERSITAE

Dr. Ira PUspaséri, S.Si., M.T
NIDN. 0710078601

SURAT PERNYATAAN
PERSETUJUAN PUBLIKASI DAN KEASLIAN KARYA ILMIAH

Sebagai mahasiswa Universitas Dinamika, Saya :

Nama : Fairus Frans Maulana Pambayun Sugiarto
NIM : 22410200006

Program Studi : SI Teknik Komputer

Fakultas : Teknologi dan Informatika

Jenis Karya : Laporan Kerja Praktik

Judul Karya : MONITORING NOTIFIKASI JADWAL PEMBERIAN PAKAN IKAN
AKUARIUM MENGGUNAKAN ESP32 DAN BUZZER BERBASIS MQTT

Menyatakan dengan sesungguhnya bahwa :

1. Demi pengembangan ilmu pengetahuan, Teknologi dan Seni, Saya menyetujui memberikan
kepada Universitas Dinamika Hak Bebas Royalti Non-Eksklusif (Non-Exclusive Royalty
Free Right) atas seluruh isi/sebagian karya ilmiah saya tersebut diatas untuk disimpan,
dialihmediakan, dan dikelola dalam bentuk pangkalan data (Database) untuk selanjutnya
didistribusikan atau dipublikasikan demi kepentingan akademis dengan tetap
mencantumkan nama saya sebagai penulis atau pencipta dan sebagai pemilik Hak Cipta.
Karya tersebut diatas adalah hasil karya asli saya, dan bukan plagiat baik sebagian maupun

o

keseluruhan. Kutipan, karya atau pendapat orang lain yang ada dalam karya ilmiah ini
semata-mata hanya scbagai rujukan yang dicantumkan dalam Dafiar Pustaka Saya.

3. Apabila dikemudian hari ditemukan dan terbukti terdapat tindakan plagiasi pada karya
ilmiah ini, maka saya bersedia untuk menerima pencabutan terhadap gelar kesarjanaan
yang telah diberikan kepada saya.

Demikian surat pernyataan ini saya buat dengan sebenar-benarnya.

Surabaya, 11 Desember 2025

Fairus Frans Maulana P.S.
NIM. 22410200006

ABSTRAK

Perawatan akuarium adalah salah satu bidang otomatisasi yang telah direvolusi oleh
perkembangan Internet of Things (loT). Ketidakteraturan dalam pemberian pakan
ikan, baik konsistensi maupun waktu, adalah salah satu masalah umum yang dapat
membahayakan kesehatan ikan. Pada Ruang Dosen S1 Teknik Komputer
Universitas Dinamika, akuarium sering menjadi bagian dari suasana kerja, sehingga
diperlukan sistem yang dapat membantu menjaga pakan teratur. Penelitian kerja
praktek ini merancang dan mengimplementasikan sistem yang melacak jadwal
pemberian pakan ikan di akuarium menggunakan ESP32 dengan protokol
komunikasi MQTT. Sistem ini memiliki konektivitas Wi-Fi yang stabil dan
mendukung komunikasi ringan berbasis MQTT, dan dilengkapi dengan buzzer
untuk memberi tahu ikan bahwa waktu pemberian pakan telah tiba. Hasil pengujian
menunjukkan bahwa sistem mampu memberikan notifikasi tepat waktu dengan
rata-rata delay kurang dari 3 detik. Buzzer berhasil memberikan pengingat pada
setiap jadwal yang ditetapkan, yang memungkinkan pemberian pakan dilakukan
dengan lebih teratur. Oleh karena itu, sistem ini tidak hanya dapat membantu
menjaga kesehatan ikan, tetapi juga membuat dosing lebih mudah untuk dilakukan

saat memelihara ikan di akuarium.

Kata kunci: Internet of Things (loT), ESP32, MQTT, Buzzer, Monitoring,

Notifikasi, Pemberian Pakan Ikan.

Vi

KATA PENGANTAR

Dengan mengucapkan puji syukur ke hadirat Tuhan Yang Maha Esa atas
segala limpahan rahmat dan hidayah-Nya, penulis dapat menyelesaikan Laporan
Kerja Praktik dengan judul “Monitoring Notifikasi Jadwal Pemberian Pakan Ikan
Akuarium Menggunakan ESP32 dan Buzzer Berbasis MQTT.”

Laporan Kerja Praktik ini disusun dalam rangka penulisan laporan untuk lulus
mata kuliah Kerja Praktik pada Program Studi S1 Teknik Komputer Universitas
Dinamika Surabaya. Dalam penulisan Laporan Kerja Praktik ini tidak lepas dari
adanya bimbingan, nasihat, bantuan, saran, serta motivasi yang diberikan kepada
oleh pihak terkait. Oleh karena itu, penulis mengucapkan terima kasih kepada:

1. Orang tua saya yang selalu memberikan Doa, Dukungan dan Motivasi

selama mengikui kegiatan .

2. Bapak Pauladie Susanto, S.Kom., M.T., Selaku penyelia sekaligus Ketua
Program Studi S1 Teknik Komputer lama yang telah memberikan izin
kepada penulis untuk melakukan Kerja Praktik di Ruang Dosen S1 Teknik
Komputer .

3. Ibu Dr. Ira Puspasari, S.Si., M.T., selaku Ketua Program Studi S1 Teknik
Komputer baru sekaligus dosen pembimbing yang telah memberikan arahan
dan bimbingan selama proses kerja praktik dan peyusunan laporan ini.

4. lbu Elisabeth Ria Anggreani A.Md.Keb., selaku koordinator kerja praktik
di Universitas Dinamika.

5. Bapak Charisma Dimas Affandi, S.T., selaku laboran yang telah
memberikan bimbingan dan bantuan dalam mengerjakan Project Akhir

Kerja Praktik di Universitas Dinamika.

Pihak-pihak lain yang tidak dapat disebutkan satu-persatu yang telah memberikan
bantuan dan dukungan kepada penulis.

Semoga Allah SWT memberikan balasan yang setimpal kepada semua pihak yang
telah membantu dan memberikan bimbingan serta nasehat dalam proses Kerja
Praktik ini. Penulis menyadari bahwa Kerja Praktik yang dikerjakan ini masih

banyak terdapat kekurangan sehingga kritik yang bersifat membangun dan saran

vii

dari semua pihak sangatlah diharapkan agar aplikasi ini dapat diperbaiki menjadi
lebih baik lagi. Semoga laporan ini dapat memberikan manfaat dan menjadi
referensi bagi pihak-pihak yang membutuhkan

Surabaya, 20 November 2025

Fairus Frans Maulana Pambayun Sugiarto

viii

DAFTAR ISI

Halaman
ABSTRAK ...ttt res Vi
KATAPENGANTAR ...ttt ettt staa et et e e et e et e nae e vii
DAFTAR IS ..ottt ettt e te e e et e e aeeanaee e iX
DAFTAR TABELooiiiieie ittt e et sa et aa e e sne e nae e Xii
DAFTAR GAMBAR ..ottt ettt tae et e e Xiii
DAFTAR LAMPIRAN ..ottt ettt e et XV
BAB I PENDAHULUAN ..ottt ae et snae e 1
1.1 Latar BelaKang.........cooviiiiiiiieiiiee e 1
1.2 RUMUSAN MaSalahoeiiiiiiiie e 2
1.3 Batasan Masalahccooveiiiie i 2
Lo TUJUBN ottt ettt 3
L5 MANTAAEoeeieiie s 4
BAB Il GAMBARAN UMUM PERUSAHAANcoooiiiieieece e 5
2.1Sejarah Universitas DINamiKa............cccooviiiiiiiiiiiie e 5
2.2 Visi Misidan Tujuan Perusanaan.............coooveiiieiiiiiie e 6
Vg JlRIINJEDCITACGC.. 6
ooy N R N R S A 6
RS TUNEEN 0. L. WA ... 7
2.3 Profil PEIUSANAAN. iiieiie ittt et 7
2.4 STPUKEUN OFQANISASI. .. .eeeivieeiiieeeiiiee et e e seeestee e s tee e tae e st a e e e e e e s nneaennneas 8
2.5 Program Studi S1 Teknik KOMPULET.........c.ceoviiiieiiireiiiee e 8
2.5.1 VISTMISE ..ottt 9
2.5.2 TUJUAN ...ttt ettt ettt 10
2.5.3 PROFESI LULUSAN..ottt sttt 10
BAB 11l LANDASAN TEORIcoiiiiiiieiiieie et 11
3.1 AKUAMUM HIBS .t 11
B2 ESP B2 s 12
3.3 BUZzZer LOWLEVEl TrIQUer.....c.vve it 14
3.4 Internet Of ThiNGS (IOT)....cciiiee i 15
35 IOT MQTT PANEL ...ocuiiiiieiiieciie ettt 16
3.6 ArdUINO IDE.........iiiiiiiii e s 17
BAB IV DESKRIPSI PEKERJAAN.......cciiiiiiiiesie et 19
4.1 Uraian PEKEIJaaN.cuvvie ettt 19

4.2 Diagram alur PENQEIJAANccvieiieeiieesie et 19

4.2.1 Studi Literatur KOMPONENccuviiiieiiieiec e 20
4.2.2 Pengujian Buzzer LOWLeVEl Trigger........cccooiiiieiiieiiiiie e 20
4.2.3 Perancangan RANGKAIANcccuiiiiiiiiiiiieiie e 21
4.2.4 Pengujian RaANGKAIANcoiiieiiieiieiii e 21
4.3 Rangkaian Skematik Untuk Simulasinyac.cccooeviiiniiiiccee, 22
4.3.1 Komponen yang Terlibatcccooovoiiiiiiii e 22
4.3.2 Sistem Penjadwalan dan Manajemen EEPROM...........cccoccoiiiiiincciienn, 23

4.3.3 Koneksi WIFI dan MQTTovvieiiieeiiie e 23
4.3.4 Aplikasi Smartphone IOT MQTT PANELccccoviiiiiiiiieiiececee e, 23
O ([0 I I (=T = PRSP SRR 24
4.4.1 Mempelajari EEPROMccoiiiiiiii s 25
4.4.2 Mempelajari KONeKSi WIFTcoiiiiiiiiiie e 27
4.4.3 Konsep Dasar MQTT dan Implementasinya pada ESP32/ESP8266............. 28
4.5 Pengujian Buzzer LOW LeVel Trgger......cccoovviiiieiiieiie e 31
4.5.1 TUJUAN PENQUJIANeeiiiiie it ie st es e tea et e e ataa e e sbae e e sns e e snnaeeenneee e 31
4.5.2 Alat dan Bahanccooiiiiiiiiiie e 33
4.5.3 Deskripsi Singkat Komponen Utamacccecvvueeeiireeiieeesieeesieeesneee e 35
4.5.4 Skema Hubungan Fisik RangKaian.............ccccccoovieiiiiieeniie e 37
4.5.5 Langkah PENQUJIANc.vveiiiiec e 39
4.5.6 Pengujian Buzzer 1 Detik ON — 1 Detik OFFcccooeeviieeiiie e, 38
4.5.7 Pengujian Buzzer Menyala Setiap 10 Detik Sekali.............ccccoveviieeninnnnnn, 41
4.5.8 Pengujian Buzzer Bunyi Setiap 1 Menit Selama 5 Detik..............ccceevveenne. 46
4.5.9 Kodingan Buzzer Bunyi Menggunakan Millis()......ccccoiiiiiiiineeninnnnnn, 49
4.5.10 Pengujian Buzzer Menggunakan EEPROMcccccoovveiiiic e, 53
4.5.11 Pengujian Buzzer Menggunakan Koneksi WIFIL.............ccccccovveeiiie e, 67
4.5.12 Pengujian Buzzer Menggunakan Koneksi MQTTccccovvvveviiieeiineeennen. 70
4.6 Perancangan RangKaiancccoveeiiiiiiiie e 76
4.6.1 Skenario Pengujian Rangkaian..............cccceeivvieiiiee e 76
4.6.2 Implementasi Simulasi di Ruang DOSENcccocveiiieeiiiee e 76
4.7 Pengujian Rangkaian Project AKNIr...........ccccoivieiiieiie e 77
4.7.1 Deskripsi Umum PENQUIIANccuveieiiiieiiiieiiiee e 77

4.7.2 SKENArio PENQUIIANooviiiiieiie ettt 77

4.7.3 Implementasi PENQUJIANcoiiiiieeiiieie e 78
4.7.4 Kodingan ARDUINO IDEccccoiiiiiiiiie e 78
4.7.5 Output dan Pembahasanccceiieiiiiiiii e 83
BAB V PENUTUP. ..ottt 91
5.1 KESTMPUIAN ... 91
5.2 SAIAN ...ttt 92
DAFTAR PUSTAKA . ..ottt 93
LAMPIRAN L.ttt ettt 95

Xi

DAFTAR TABEL

Halaman
Tabel 4.3.2 Address dan Fungsi EEPROM 23
Tabel 4.4.1 Perbandingan Singkat Penggunaan EEPROM 26
Tabel 4.5.2 Nama Alat dan Fungsi 33
Tabel 4.5.2 Nama Bahan, Spesifikasi, dan Fungsi 34
Tabel 4.5.4 Komponen Buzzer, Terhubung ke ESP32, dan Fungsi 37
Tabel 4.7.5 Hasil Uji Jadwal dan Status Buzzer 88

Xii

DAFTAR GAMBAR
Halaman

Gambar 2.3 Lokasi Ruang Prodi S1 Teknik Komputer Universitas Dinamika 7

Gambar 2.4 Struktur Organisasi 8
Gambar 3.1 Akuarium Hias 11
Gambar 3.2 ESP 32 DEVKIT V1 beserta PINOUT 12
Gambar 3.3 Buzzer Low Level Trigger 14
Gambar 3.5 10T MQTT PANEL 16
Gambar 3.6 Arduino IDE 17
Gambar 4.2 Diagram Alur pengerjaan 19
Gambar 4.3 Rangkaian Skematik 22
Gambar 4.5.5.5 Output Durasi EEPROM 57
Gambar 4.5.5.5 Output Konfigurasi Buzzer Dari EEPROM 65
Gambar 4.5.5.5 Output masukkan “a','v','c' untuk mengubah pola 65
Gambar 4.5.5.5 Output Konfigurasi baru tersimpan pada Pola ‘a' 65
Gambar 4.5.5.5 Output Konfigurasi baru tersimpan pada Pola ‘b' 66
Gambar 4.5.5.5 Output Konfigurasi baru tersimpan pada Pola ‘c' 66
Gambar 4.5.5.6 Hasil output Koneksi WIFI 69
Gambar 4.5.5.7 Output Koneksi MQTT di Arduino IDE 74
Gambar 4.5.5.7 Output Koneksi MQTT di aplikasi loT MQTT Panel Saat Posisi
Buzzer ON 74
Gambar 4.5.5.7 Output Koneksi MQTT di aplikasi loT MQTT Panel Saat Posisi
Buzzer OFF 75
Gambar 4.7.1 Rangkaian Project Akhir Perangkat Keras (Hardware) 77
Gambar 4.7.5 Output Ketika sebelum koneksi MQTT stabil di ARDUINO IDE 84
Gambar 4.7.5 Output MQTT reconnect di ARDUINO IDE 84

Xiii

Gambar 4.7.5 Saat Posisi Buzzer Idle

Gambar 4.7.5 Status Buzzer Aktif
Gambar 4.7.5 Jadwal Reset
Gambar 4.7.5 Ubah Jadwal

Xiv

85
85
86
86

Lampiran 1.
Lampiran 2.
Lampiran 3.
Lampiran 4.
Lampiran 5.
Lampiran 6.
Lampiran 7.
Lampiran 8.

Lampiran 9.

DAFTAR LAMPIRAN

Permohonan Surat ljin Kerja Praktik di Perusahaan
Surat Balasan dari Perusahaan

Form KP-5

Form KP-6

Form KP-7

Form Bimbingan

Kodingan Arduino IDE

Screenshoot HP Aplikasi IOT MQTT PANEL

Biodata

XV

Halaman

95

96

97

99

101

102

103

111

119

BAB |
PENDAHULUAN

1.1 Latar Belakang

Perkembangan teknologi Internet of Things (loT) telah mempermudah
banyak aspek kehidupan, seperti menjaga ikan hias di akuarium. Pakan yang
tidak teratur, baik dalam jumlah maupun waktu, adalah salah satu masalah
umum yang sering dihadapi, yang dapat berdampak negatif pada kesehatan ikan
dan lingkungan akuarium. Seringkali, di lingkungan akademik, terutama di
Ruang Dosen S1 Teknik Komputer Universitas Dinamika, ada akuarium untuk
kenyamanan dan hiasan. Namun, karena banyaknya aktivitas dosen, pemberian
pakan terkadang terlupakan atau tidak teratur. Akibatnya, diperlukan sebuah
sistem yang dapat melakukan monitoring dan sekaligus memberikan notifikasi
secara otomatis tentang jadwal pemberian pakan ikan.

Karena memiliki konektivitas Wi-Fi, daya komputasi yang tinggi, dan
kompatibel dengan protokol komunikasi ringan MQTT, ESP32 adalah
mikrokontroler yang ideal untuk digunakan. Dengan menambahkan buzzer,
sistem dapat memberikan notifikasi suara ketika jadwal pemberian pakan tiba.
Ini memudahkan dosen untuk memastikan ikan mendapatkan pakan tepat
waktu. Studi sebelumnya menunjukkan bahwa penggunaan Internet of Things
(1oT) dalam sistem pemberian pakan ikan otomatis dapat berhasil. Chaidir dkk.
(2024) mengontrol alat pemberi pakan dengan delay komunikasi yang rendah
dengan menggunakan ESP32 dan MQTT.

Sementara itu, Burhani dkk. (2022) menerapkan sistem 0T dan sensor
untuk memantau kualitas air dan pakan otomatis. Penelitian lain oleh Koromari
dan David (2023) merancang sistem pakan otomatis sekaligus monitoring TDS
berbasis ESP32 dan MQTT, yang menunjukkan keberhasilan implementasi
dalam hal pemeliharaan ikan hias di akuarium. Hasil penelitian ini menunjukkan
bahwa integrasi buzzer, ESP32, dan MQTT adalah solusi yang layak untuk
dikembangkan sebagai solusi untuk melacak jadwal pemberian pakan ikan di

ruang dosen.

1.2 Rumusan Masalah

Berdasarkan informasi di atas, rumusan masalah yang dapat diidentifikasi adalah

sebagai berikut:

1. Bagaimana merancang sistem pemantauan otomatis untuk pemberian pakan
ikan yang dapat diakses melalui jaringan Wi-Fi?

2. Apa saja bagian yang diperlukan untuk menerapkan sistem ini?

3. Bagaimana cara kerja bagian-bagian dalam sistem yang mengawasi pencarian
pakan ikan?

4. Dengan cara apa sistem akan memberi tahu pengguna tentang jadwal
pemberian pakan?

5. Seberapa efektif sistem ini dalam meningkatkan jumlah pakan yang diberikan

kepada ikan di akuarium ruang dosen secara teratur?

1.3 Batasan Masalah

Batasan masalah yang ditetapkan adalah sebagai berikut:

1. Ruang Lingkup Sistem: Sistem yang dikembangkan hanya akan diterapkan pada
akuarium ikan hias di Ruang Dosen S1 Teknik Komputer Universitas Dinamika,
untuk memastikan fokus dan kelayakan penelitian. Jenis akuarium lain tidak akan
diuji atau diimplementasikan.

2. Komponen Sistem: Penelitian ini tidak akan mengintegrasikan komponen sistem
lainnya, seperti sensor kualitas air, tetapi akan menggunakan mikrokontroler
ESP32, buzzer, dan modul komunikasi MQTT.

3. Notifikasi: Notifikasi hanya akan dikirim melalui buzzer suara. Tidak akan ada
notifikasi visual atau penggunaan aplikasi mobile lainnya.

4. Jadwal Pemberian Pakan: Pengguna akan menentukan jadwal pemberian pakan
secara manual, dan tidak akan menyertakan algoritma pembelajaran untuk
penyesuaian otomatis berdasarkan pola makan ikan.

5. Efektivitas dan Kualitas: Penelitian ini akan membahas efektivitas sistem dalam
hal konsistensi pemberian pakan, tetapi tidak akan membahas dampak jangka
panjang terhadap kesehatan ikan dan kualitas air, yang mungkin akan menjadi topik

penelitian lain di masa mendatang.

1.4 Tujuan

Tujuan penelitian ini adalah sebagai berikut:

1.

Merancang Sistem Monitoring: Menciptakan sistem monitoring otomatis untuk
pemberian pakan ikan yang dapat diakses melalui jaringan Wi-Fi, memudahkan
pengguna untuk mengontrol jadwal pemberian pakan.

Identifikasi Komponen: Mengidentifikasi dan mendokumentasikan komponen
yang diperlukan untuk implementasi sistem, serta menjelaskan cara masing-
masing komponen bekerja.

Pengembangan Notifikasi: Buat sistem yang efektif dengan buzzer untuk
mengingatkan pengguna saat jadwal pemberian pakan tiba.

Evaluasi Efektivitas: Mengevaluasi seberapa efektif sistem ini dapat
meningkatkan konsistensi pemberian pakan ikan di akuarium ruang dosen dan
mengevaluasi tanggapan pengguna tentang penggunaan sistem.

Dampak terhadap Kesehatan lkan: Melakukan analisis awal tentang efek
penggunaan sistem ini terhadap kesehatan ikan dan kualitas lingkungan
akuarium, meskipun hal ini tidak dilakukan secara menyeluruh dalam penelitian

ini.

1.5 Manfaat

Manfaat yang diharapkan dari penelitian ini adalah sebagai berikut:

1.

Kemudahan dalam Pemeliharaan: Sistem ini akan membantu pemilik akuarium
memberi pakan ikan secara teratur, sehingga mengurangi risiko kesehatan ikan
karena pakan yang tidak teratur.

Monitoring Kualitas Air: Adanya sistem monitoring akan membuat pengguna
lebih mudah melacak kondisi lingkungan akuarium, termasuk kualitas air, yang
merupakan komponen penting dalam menjaga ikan.

Efisiensi Waktu: Pemilik ikan dapat menghemat waktu dengan sistem otomatis,
terutama bagi mereka yang sibuk, karena mereka tidak perlu memikirkan pakan
yang terlupakan.

Peningkatan Pengetahuan: Penelitian ini diharapkan dapat memberikan
wawasan baru tentang penerapan teknologi Internet of Things (loT) dalam

akuakultur. Hasil penelitian ini akan menjadi dasar untuk penelitian selanjutnya.

5. Kontribusi pada Sektor Perikanan: Diharapkan dapat berdampak positif pada
ekonomi, terutama bagi komunitas yang terlibat dalam budidaya ikan hias,
dengan meningkatkan efisiensi dalam pemberian pakan dan pemeliharaan ikan.

6. Pengembangan Teknologi: Penelitian ini akan mendorong kemajuan teknologi
di bidang otomasi dan kontrol, serta aplikasi 10T dalam kehidupan sehari-hari.

BAB I1

GAMBARAN UMUM PERUSAHAAN

2.1 Sejarah Universitas Dinamika

A

30 April 1983, Pengembangan teknologi dan informasi menjadi hal penting
dalam pembangunan dan pengembangan nasional. Kedua hal tersebut juga
harus diiringi dengan di bidang ekonomi dan bisnis untuk bisa bersaing di
era yang terus berkembang. Seni dan budaya harus tetap di pertahankan agar
identitas bangsa tidak musnah. Melalui empat (4) hal utama, yaitu kritis,
kreatif, kolaborasi, dan komunikasi, para pendiri yang terdiri dari laksda.
TNI (Purn) Mardiono, Ir. Andrian A.T, Ir. Handoko A.T, Dra. Rosy
Merianti, Ak. dalam bidang teknologi informasi dengan nama AKIS
(Akademi Komputer dan Informatika Surabaya).

10 Maret 1984, lzin operasional penyelenggara program Diploma Il
Manajemen Informatika diberikan kepada AKIS melalui SK Kopertis
Wilayah VII Jawa Timur.

19 Juni 1984, AKIS yang berlokasi di Ketintang Surabaya memperoleh
status terdaftar dari DIKTI.

20 Maret 1986, Terus meningkatnya kebutuhan pendidikan, Yayasan Putra
Bhakti memutuskan untuk merubah Akademi menjadi Sekolah Tinggi.
AKIS (Akademi Komputer dan Informatika Surabaya) berubah menjadi
Sekolah Tinggi Manajemen Informatika dan Teknik Komputer Surabaya,
yang lebih dikenal dengan STIKOM Surabaya.

11 Desember 1987, STIKOM Surabaya membangun kampus pertama yang
berlokasi di jalan Kutisari N0.66 Surabaya, yang diresmikan oleh Letnan
Jendral TNI Wahono selaku Gubernur Jawa Timur pada saat itu.

28 Oktober 1997, Awal pemasangan tiang pancang pertama STIKOM
Surabaya di Jalan Raya Kedung Baruk N0.98 Surabaya bersamaan dengan
Hari Sumpah Pemuda.

04 September 2014, Seiring dengan perubahan zaman serta kebutuhan

masyarakat, STIKOM Surabaya resmi berubah menjadi Institut dengan

nama Institut Bisnis dan informatika STIKOM Surabaya yang memiliki 2
fakultas dengan 9 program studi.

H. 29 Juli 2019, Melalui Surat Keputusan Riset Dikti, Institut Bisnis dan
Informatika STIKOM Surabaya resmi berubah menjadi Universitas
Dinamika yang memiliki 2 fakultas dengan 9 program studi, yakni Fakultas,
Prodi S1 Teknik Komputer, Prodi S1 Desain Komunikasi Visual, Prodi S1
Desain Produk, Prodi D4 Produksi Film dan Televisi, dan Prodi D3 Sistem
Informasi. Serta Fakultas Ekonomi dan Bisnis (FEB) dengan Prodi S1
Manajemen, Prodi S1 Akuntansi, dan Prodi D3 Administrasi Perkantoran.

I. 31 Mei 2021, Melalui Surat Keputusan Rektor, Universitas Dinamika
melakukan perubahan struktur organisasi dengan membentuk fakultas baru,
yakni Fakultas Desain dan Industri Kreatif (FDIK) dengan 3 program studi,
yaitu Prodi S1 Desain Produk, Prodi S1 Desain Komunikasi Visual, dan D4
Produksi Film dan Televisi yang sebelumnya berada dibawah naungan
Fakultas Teknologi dan Informatika (FTT1).

2.2 Visi Misi Dan Tujuan Perusahaan

2.2.1 Visi

Menjadi smart entrepreneurial university berskala global yang produktif dalam

berinovasi.

2.2.2 Misi

1. Menyelenggarakan dan mengembangkan pendidikan berbasis teknologi
informasi yang bermutu dan berdaya saing global.

2. Melaksanakan penelitian yang berfokus pada pengembangan inovasi untuk
mewujudkan entrepreneurial university.

3. Melakukan pengabdian untuk menyebarluaskan ipteks dan hasil inovasi bagi
kesejahteraan masyarakat.

4. Melaksanakan kemitraan berskala global.
Mengembangkan bisnis dan kewirausahaan secara otonom yang akuntabel dan
transparan.

2.2.3 Tujuan

1. Menyelenggarakan pendidikan yang berkualitas, inovatif, dan futuristik.

6.

7.

Menciptakan SDM berdaya saing global dan berjiwa entrepreneur.
Menghasilkan penelitian berkualitas dan berskala global.
Menghasilkan inovasi yang bernilai jual dan bermanfaat bagi masyarakat.

Melaksanakan diseminasi ipteks dan/atau hasil inovasi untuk meningkatkan
kesejahteraan masyarakat.

Mewujudkan kemitraan berskala global.

Menjamin keberlanjutan Perguruan Tinggi.

2.3 Profil Perusahaan

Nama Instansi : Ruang Prodi S1 Teknik Komputer Universitas Dinamika
Alamat : JI. Raya Kedung Baruk No. 98, Kedung Baruk, Kec.

Rungkut, Surabaya, Jawa Timur 60298

v Sekolah Menengah

uruan Kesehatan

ma
| pedoven =S
)\

ir in Surabaya

' Universitas Dinamika

m T
um Tel

noform

JI. Rayak Museun 1of¢
€dung Baryy Universitas DINAMIKA

Gambar 2.3 Lokasi Ruang Prodi S1 Teknik Komputer Universitas Dinamika

(Sumber: https://www.google.com/maps/)

Email : universitasdinamika@dinamika.ac.id

Website : www.dinamika.ac.id
No Telfon & Faks: (031)8721731 /8710218
Sosial Media

Facebook : Universitas Dinamika

Youtube : Universitas Dinamika

Instagram : @universitasdinamika

https://www.google.com/maps/
mailto:universitasdinamika@dinamika.ac.id
http://www.dinamika.ac.id/

2.4 Struktur Organisasi

Gambar 2.4 Struktur Organisasi

Lingkaran merah pada gambar tersebut menunjukkan Ruang Prodi S1
Teknik Komputer, yang berada di bawah Fakultas Teknologi dan Informatika,
Universitas Dinamika. Di Ruang Prodi inilah tempat melaksanakan kerja praktik
untuk merancang Simulasi Monitoring Notifikasi Jadwal Pemberian Pakan Ikan
Akuarium Menggunakan ESP 32 dan Buzzer Sebagai Alat perangkat Hardwarenya.
Untuk perangkat software nya Memantau kapan harus memberi pakan ikan
Akuarium Menggunakan MQTT sebagai pengontrol Jadwal Pemberian pakan Ikan

Akuarium.

2.5 Program Studi S1 Teknik Komputer

Program Studi S1 Teknik Komputer mulai beroperasi sejak tahun 1991.
Tujuan dari program ini adalah menghasilkan lulusan yang memiliki kompetensi di
bidang sistem komputer dan otomasi industri. Mahasiswa dibekali dengan berbagai
mata kuliah pendukung, seperti Mikrokontroler, Programmable Logic Controller
(PLC), Sistem Digital, Jaringan Komputer, serta Robotika. Lulusan dari program
ini diharapkan mampu melakukan analisis, perancangan, dan pengembangan sistem
otomasi industri yang berbasis komputer. Karier yang dapat dijalani antara lain
sebagai Computer System Engineer, Embedded System Developer, dan Automation
Engineer.

Program ini juga memberikan penekanan pada keseimbangan antara

pemahaman teoritis dan keterampilan praktis melalui kegiatan seperti praktikum,

penelitian, dan proyek akhir. Mahasiswa juga dibekali kemampuan dalam
pemrograman tingkat lanjut, pengolahan data, serta pengembangan sistem berbasis
kecerdasan buatan (Al). Kurikulum yang disusun selalu diperbarui agar selaras
dengan perkembangan kebutuhan industri, sehingga lulusan S1 Teknik Komputer
Universitas Dinamika mampu bersaing di dunia kerja maupun melanjutkan
pendidikan ke jenjang lebih tinggi.

Selain itu, mahasiswa diberikan peluang untuk mengikuti sertifikasi industri
seperti Cisco Certified Network Associate (CCNA) dan sertifikasi di bidang
embedded system programming, guna meningkatkan daya saing di dunia
profesional. Melalui kegiatan kerja praktik, mahasiswa dapat mengembangkan
keterampilan sesuai kebutuhan industri dan memperoleh pengalaman nyata

sebelum memasuki dunia kerja secara langsung.

2.5.1 VISI MISI
Visi:
Mengembangkan keilmuan di bidang 10T yang didukung oleh kecerdasan artifisial,
dan diintegrasikan dengan konsep technopreneurship, sehingga mampu
menciptakan inovasi yang bermanfaat bagi masyarakat dan industri berskala global.
Misi:
1. Mengembangkan pendidikan dan pengajaran di bidang Teknik Komputer yang

bermutu, berwawasan global, dan mengarah pada technopreneurship.

2. Melaksanakan penelitian di bidang Teknik Komputer yang inovatif dan solutif

bagi masyarakat dan industri berskala global.

3. Melaksanakan pengabdian atau penerapan hasil inovasi di bidang Teknik

Komputer yang bermanfaat bagi masyarakat dan industri.

2.5.2 TUJUAN

Tujuan Program Studi S1 Teknik Komputer adalah sebagai berikut:
1. Lulusan memiliki kemampuan menganalisis permasalahan sistem komputer
khususnya pada aspek perangkat lunak dan perangkat keras untuk

menghasilkan solusi bagi organisasi.

2. Lulusan memiliki kemampuan menganalisis perangkat lunak (meliputi
pemrograman antarmuka, pemrograman real-time) dan perangkat keras
(meliputi pemantauan, pengendalian) sistem komputer sebagai solusi bagi

permasalahan organisasi.

3. Lulusan memiliki kemampuan menganalisis dan merancang sistem
komputer dengan menerapkan sistem tertanam, Internet of Things (loT),
kecerdasan artifisial, dan/atau jaringan komputer untuk menghasilkan solusi

bagi organisasi.

4. Lulusan yang memiliki kemampuan dalam merumuskan keputusan yang
tepat berdasarkan analisis informasi dan data, beretika, dan bertanggung

jawab pada pekerjaan dalam lingkup tugasnya.

2.5.3 PROFESI LULUSAN

Profesi Lulusan Program Studi

1. 10T Engineer : Menyediakan produk dan atau solusi loT sesuai dengan
kebutuhan penggguna.

2. Artificial Intelligent Engineer : Membangun solusi berbasis kecerdasaan artifisial
(Artificial Intelligence/Al)

3. Network Designer : Melaksanakan penyediaan desain instalasi jaringan dan
infrastruktur meliputi kegiatan pemetaan kebutuhan, monitoring dan pengawasan
dampak design pembangunan dan pengembangan instalasi jaringan dan
infrastruktur yang dibutuhkan oleh user sejalan dengan rencana dan pengembangan
organisasi.

4. Digital Computer Technology Advisor : Memecahkan masalah teknis,
memberikan saran tentang perangkat keras dan perangkat lunak yang tepat, serta
mengoptimalkan penggunaan teknologi dalam bisnis atau kehidupan sehari-hari.
5. Industrial Automation : Meningkatkan efisiensi dan produktivitas sistem

produksi di industri

10

BAB Il

LANDASAN TEORI

3.1 Akuarium Hias

Gambar 3.1 Akuarium Hias

Akuarium hias adalah tempat buatan di mana ikan, tanaman air, dan
dekorasi lainnya dipelihara untuk rekreasi, pendidikan, dan penelitian. Menurut
Wijaya dan Wellem (2022), akuarium kontemporer tidak hanya berfungsi sebagai
sarana estetika, tetapi juga telah berkembang menjadi alat untuk mengajar dan
mengeksplorasi teknologi, khususnya Internet of Things (loT). Akuarium hias
mampu memperkenalkan konsep ekosistem perairan dalam ruang terbatas, yang
membuatnya berguna sebagai sarana edukasi. Dari perspektif teknologi, akuarium
juga menjadi tempat untuk mencoba berbagai inovasi. Misalnya, mereka dapat
memantau kualitas air, suhu, kadar oksigen, dan merancang sistem pemberian
pakan otomatis. Dengan kemajuan teknologi Internet of Things (loT), akuarium
sekarang lebih dari sekadar tempat untuk menyimpan ikan. Mereka sekarang dapat
dihubungkan ke sensor, aktuator, dan sistem kendali berbasis mikrokontroler
seperti ESP32. Dengan integrasi ini, jaringan internet memungkinkan pemantauan
dan pengendalian parameter secara real-time.

Dengan membangun akuarium pintar, mahasiswa belajar tentang
penggunaan 10T untuk pengawasan dan otomasi. Penggunaan sensor untuk

memantau waktu pemberian pakan, pengaturan pencahayaan, dan pengiriman

11

notifikasi melalui platform MQTT (Message Queuing Telemetry Transport) adalah
beberapa contohnya. Oleh karena itu, akuarium yang indah tidak hanya membantu
dalam hal estetika dan hiburan, tetapi juga membantu dalam pengembangan
teknologi cerdas yang berkaitan dengan pendidikan, penelitian, dan penerapan

masyarakat.

Gambar 3.2 ESP 32 DEVKIT V1 beserta PINOUT
Sumber: (https://mischianti.org/doit-esp32-dev-kit-v1-high-resolution-

pinout-and-specs/)

ESP32 merupakan mikrokontroler generasi lanjut yang dikembangkan oleh
Espressif Systems sebagai penerus dari ESP8266 dengan kemampuan yang lebih
unggul. ESP32 mengintegrasikan prosesor dual-core Tensilica LX6 berkecepatan
hingga 240 MHz, memori SRAM, serta mendukung konektivitas Wi-Fi 802.11
b/g/n dan Bluetooth v4.2 (Classic dan BLE). Fitur-fitur ini menjadikan ESP32
sangat sesuai digunakan dalam proyek Internet of Things (IoT), termasuk pada
sistem monitoring dan kontrol perangkat cerdas berbasis MQTT.

Menurut Mischianti (n.d.), DOIT ESP32 Dev Kit V1 adalah salah satu varian
papan pengembangan yang banyak digunakan dalam penelitian 1oT karena
menyediakan jumlah General Purpose Input Output (GPIO) yang melimpah,
mendukung antarmuka komunikasi digital (UART, SPI, 12C), serta mampu
beroperasi dengan konsumsi daya rendah (low power consumption). Selain itu,

penelitian ini juga mempelajari datasheet resmi ESP32 sebagai acuan teknis,

12

https://mischianti.org/doit-esp32-dev-kit-v1-high-resolution-pinout-and-specs/
https://mischianti.org/doit-esp32-dev-kit-v1-high-resolution-pinout-and-specs/

sehingga implementasi sistem sesuai dengan kemampuan dan Kketerbatasan
perangkat.

Dalam konteks sistem pemberian pakan ikan otomatis, ESP32 dipilih karena:

1. Kemampuan Wi-Fi terintegrasi, sehingga dapat langsung terhubung ke
broker MQTT tanpa memerlukan modul tambahan (Chaidir dkk. 2024).

2. Dukungan multitasking, yang memungkinkan ESP32 menjalankan proses
monitoring sensor dan mengontrol aktuator (seperti buzzer) secara
bersamaan.

3. Fleksibilitas antarmuka, sehingga dapat diintegrasikan dengan sensor
kualitas air, sensor pakan, hingga aktuator servo untuk sistem pemberian
pakan (Burhani dkk. 2022).

4. Efisiensi energi, yang penting untuk sistem monitoring jangka panjang pada
perangkat 10T (Nurhidayah dkk. 2024).

Beberapa penelitian terdahulu membuktikan peran penting ESP32 dalam
pengembangan sistem smart aquarium. Ma'shumah dkk. (2024) menggunakan
ESP32 terintegrasi dengan aplikasi Blynk untuk monitoring pakan ikan hias.Wijaya
dan Wellem (2022) juga memanfaatkan ESP32 dalam implementasi Smart
Aquarium yang mengoptimalkan pemantauan kondisi akuarium secara real-time.
Sementara Koromari dan David (2023) merancang sistem pakan otomatis sekaligus
monitoring TDS berbasis ESP32 dan MQTT, yang menunjukkan kinerja baik dalam

menjaga keteraturan pemberian pakan ikan hias.

13

3.3 Buzzer Low Level Trigger

Gambar 3.3 Buzzer Low Level Trigger
Sumber: (https://www.amazon.in/DAOKAI-Active-Buzzer-Trigger-

Arduino/dp/BOB5D6NDM?2)

Buzzer adalah komponen elektronika yang dapat menghasilkan suara ketika
diberikan tegangan listrik. Buzzer terbagi menjadi dua jenis utama: buzzer
aktif (dapat berbunyi hanya ketika diberi tegangan) dan buzzer pasif
(membutuhkan sinyal frekuensi untuk menghasilkan suara). Ketika pin
input (1/0) diberi logika rendah (LOW = 0), rangkaian internal akan menjadi
lemah, sehingga buzzer akan aktif (menyala atau berbunyi). Dengan kata
lain, jika pin kontrol ESP32 diberi sinyal LOW, buzzer akan berbunyi dan

akan mati.

14

https://www.amazon.in/DAOKAI-Active-Buzzer-Trigger-Arduino/dp/B0B5D6NDM2
https://www.amazon.in/DAOKAI-Active-Buzzer-Trigger-Arduino/dp/B0B5D6NDM2

3.4 Internet of Things (1oT)

Paradigma teknologi yang dikenal sebagai Internet of Things (loT)
memungkinkan perangkat elektronik terhubung satu sama lain melalui jaringan
internet, memungkinkan pertukaran data yang otomatis tanpa intervensi manusia
secara langsung. Perangkat fisik 10T dapat dihubungkan dengan sensor, aktuator,
dan sistem komunikasi, sehingga proses monitoring dan kontrol menjadi lebih
mudah (Koromari & David, 2023). loT telah banyak dikembangkan dalam
budidaya ikan, terutama untuk sistem pakan otomatis dan pemantauan lingkungan
perairan. Nurhidayah dkk. (2024) mengembangkan sistem yang menggunakan
Internet of Things (10T) untuk memantau kualitas air dan memberikan pakan kepada
ikan lele. Penelitian mereka menunjukkan bahwa penggunaan Internet of Things
(1oT) dapat membantu mengatur jadwal pemberian pakan dan kualitas air yang
stabil.

Selain itu, Ma'shumah dkk. (2024) mengembangkan sistem yang
mengawasi pemberian pakan ikan hias dengan aplikasi Blynk yang terintegrasi
dengan Internet of Things (IoT). Sistem ini memungkinkan pengguna mengontrol
jadwal pemberian pakan secara real-time melalui aplikasi mobile, meningkatkan
efisiensi dan fleksibilitas dalam pengelolaan akuarium. Selain itu, Wijaya dan
Wellem (2022) telah menerapkan loT pada akuarium pintar, yang memungkinkan
sistem untuk secara otomatis memberikan pakan ikan dan mengontrol kondisi
lingkungan akuarium. Hal ini menunjukkan bahwa perangkat mikrokontroler dan
Internet of Things (loT) dapat menghasilkan solusi kreatif yang bermanfaat dalam

bidang akuakultur kontemporer.

15

3.510T MQTT PANEL

~—
)

Gambar 3.5 10T MQTT PANEL
Sumber:

(https://play.google.com/store/apps/details?id=snr.lab.iotmgttpanel.pro
d&hl=id)

Dengan menggunakan protokol Message Queuing Telemetry Transport
(MQTT), aplikasi mobile berbasis Android 10T MQTT Panel membantu
komunikasi antara perangkat Internet of Things (IoT) dan pengguna.
Aplikasi ini berfungsi sebagai client, memungkinkan pengguna untuk
mengirim perintah kontrol dan menerima subscribe untuk data monitoring
dari perangkat 10T. Dengan IoT MQTT Panel, pengguna dapat melihat data
sensor, melacak status perangkat, dan mendapatkan notifikasi secara real-
time.

Dalam penelitian yang dilakukan oleh Nurhidayah dkk. (2024), sistem
otomatis yang mengawasi kualitas air dan jadwal pemberian pakan ikan lele
terbukti mampu menjaga stabilitas kualitas lingkungan dan mengatur jadwal
pemberian pakan untuk budidaya ikan lele, menunjukkan betapa pentingnya
loT diintegrasikan dengan aplikasi pendukung untuk memantau dan
mengontrol. Studi Ma'shumah dkk. (2024) menggunakan aplikasi Blynk
untuk sistem pemberian pakan ikan hias berbasis 10T, yang memungkinkan
pengguna menggunakan perangkat mobile mereka untuk mengatur jadwal
pakan. Panel MQTT loT menawarkan kontrol jarak jauh dan kemudahan

integrasi dengan protokol MQTT.

16

https://play.google.com/store/apps/details?id=snr.lab.iotmqttpanel.prod&hl=id
https://play.google.com/store/apps/details?id=snr.lab.iotmqttpanel.prod&hl=id

Wijaya dan Wellem (2022) membuat ide untuk akuarium pintar yang
berbasis 10T yang secara otomatis mengatur pemberian pakan dan
memantau kondisi lingkungannya. Menurut penelitian ini, aplikasi berbasis
Internet of Things (1oT) dapat menjadi cara kreatif untuk meningkatkan
efisiensi pengelolaan akuarium. Dengan menggunakan mikrokontroler,
Koromari dan David (2023) membuat sistem pakan otomatis dan
pengawasan TDS untuk akuarium ikan hias berbasis 10T. Hasil penelitian
menunjukkan bahwa mikrokontroler dapat meningkatkan efisiensi dan
reliabilitas pengelolaan akuarium dan kolam ikan dengan

menggabungkannya dengan sistem Internet of Things (loT).

3.6 Arduino IDE

Gambar 3.6 Arduino IDE
Sumber: (https://www.arduino.cc/en/software/)

Perangkat lunak open-source yang disebut Arduino IDE
memungkinkan Anda menulis, mengompilasi, dan mengunggah
program ke papan mikrokontroler, seperti Arduino dan ESP32. Arduino
IDE juga memiliki pustaka yang mendukung berbagai perangkat keras,
dan compiler, yang membantu Anda mengembangkan sistem berbasis
mikrokontroler.

Dalam penelitian ini, Arduino IDE digunakan untuk menulis
program pengendalian buzzer dan melakukan komunikasi data melalui
protokol MQTT pada modul ESP32. Ini memenuhi kebutuhan untuk
sistem pemantauan jadwal pemberian pakan ikan, di mana ESP32
berfungsi sebagai pusat pengendali yang menetapkan waktu bunyi

buzzer sebagai notifikasi.

17

https://www.arduino.cc/en/software/

Beberapa keunggulan Arduino IDE adalah sebagai berikut:
1. Mudah digunakan bahkan oleh pemula, dengan sintaks sederhana
berbasis bahasa C/C++;
2. Kompatibilitas luas, mendukung berbagai board mikrokontroler, seperti
Arduino Uno, Mega, ESP8266, dan ESP32.
3. Library lengkap yang memudahkan integrasi dengan sensor, aktuator,
dan protokol komunikasi seperti WiFi dan MQTT.
4. Dapat digunakan di berbagai platform, termasuk Windows, Linux, dan
macOS.
Arduino IDE dapat digunakan untuk menerapkan sistem Monitoring Notifikasi
Jadwal Pemberian Pakan Ikan Akuarium untuk:
A. Menulis kode program untuk mengatur interval bunyi buzzer dan durasi
bunyi sesuai kebutuhan.
B. Konfigurasi koneksi WiFi dan MQTT untuk memungkinkan ESP32
mengirim dan menerima data dari server broker.
C. Upload program ke ESP32 untuk memungkinkan sistem bekerja secara

otomatis dan fleksibel.

Studi sebelumnya menggunakan Arduino IDE dan mikrokontroler untuk sistem
pemberian pakan ikan otomatis, yang juga menggunakan teknologi Internet of
Things (IoT) (Ma'shumah, Pramarthaningthyas, & Rohman, 2024). Penggunaan
Arduino IDE dalam penelitian ini menunjukkan bahwa Arduino IDE tidak hanya
mendukung pembuatan sistem monitoring dasar, tetapi juga dapat diintegrasikan

dengan teknologi IoT untuk aplikasi di dunia nyata.

18

BAB IV
DESKRIPSI PEKERJAAN
4.1. Uraian Pekerjaan

Dalam proyek "Monitoring Notifikasi Jadwal Pemberian Pakan Ikan
Akuarium Menggunakan ESP32 dan Buzzer Berbasis MQTT", tugas-tugas
yang harus diselesaikan dijelaskan dalam uraian pekerjaan ini. Dibagi menjadi
beberapa tahapan utama untuk melaksanakan kegiatan kerja praktik. Tahap
pertama adalah membaca literatur. Ini mencakup mempelajari bagian dan ide
yang digunakan, seperti EEPROM, koneksi Wi-Fi dengan ESP32, dan protokol
komunikasi MQTT. Untuk memastikan bahwa komponen berfungsi sesuai
dengan perancangan, pengujian lanjutan dilakukan terhadap buzzer low level
trigger. Setelah tahap pengujian komponen selesai, proses dilanjutkan ke tahap
perancangan proyek akhir. Tahap ini mencakup pemrograman mikrokontroler
ESP32, proses perakitan perangkat keras, dan integrasi dengan sistem
komunikasi MQTT. Untuk memastikan bahwa proyek dapat beroperasi dengan
baik sesuai dengan tujuan yang telah ditetapkan, yaitu mengirimkan notifikasi
jadwal pemberian pakan ikan secara otomatis melalui koneksi ke sistem, tahap

berikutnya adalah pengujian sistem secara keseluruhan.

4.2 Diagram Alur Pengerjaan

studi literatur komponen esp 32, dan buzzer low pengujian buzzer low level trigger meliputi
level trigger (delay dan milis) Meliput H delay,millis, EEPROM, koneksi Wi, dan

EEPROM Koneksi Wifi dan MQTT MaTT

h 4

Perancangan Rangkaian

h 4

Pengujian Rangkaian

Gambar 4.2 Diagram Alur pengerjaan

19

Diagram alur pekerjaan dari tugas praktik berjudul "Monitoring Notifikasi Jadwal
Pemberian Pakan lkan Akuarium Menggunakan ESP32 dan Buzzer Berbasis
MQTT di Ruang Dosen S1 Teknik Komputer Universitas Dinamika" terdiri dari
beberapa tahapan, yaitu:

4.2.1 Studi Literatur Komponen

Pada tahap awal, informasi tentang fitur-fitur utama yang digunakan dalam sistem

dikumpulkan. Fitur-fitur tersebut meliputi:

a) ESP32 — sebuah mikrokontroler yang terintegrasi dengan WiFi dan Bluetooth
yang mendukung aplikasi Internet of Things (IoT) serta komunikasi berbasis
protokol MQTT

b) Buzzer Low Level Trigger — buzzer yang aktif saat menerima logika rendah,

sehingga dapat dikendalikan langsung oleh pin digital ESP32.

c) MQTT (Message Queuing Telemetry Transport) — protokol komunikasi ringan
dengan mekanisme publish/subscribe yang sangat efisien untuk sistem Internet
of Things (1oT).

Tahap literatur ini sangat penting untuk memastikan bahwa perangkat lunak dan

perangkat keras dapat berinteraksi sesuai kebutuhan sistem.

4.2.2 Pengujian Buzzer Low Level Trigger

Sebelum perancangan sistem dilakukan, buzzer diuji secara terpisah dengan metode
berikut:
a) delay() — Untuk menguji fungsi nyala-mati buzzer secara sederhana
(blocking).
b) millis() — Untuk pengaturan waktu non-blocking, sehingga ESP32
tetap dapat menjalankan tugas lain.
c) EEPROM — Digunakan untuk menyimpan konfigurasi jadwal pemberian
pakan agar data tetap tersimpan walaupun ESP32 dimatikan.
d) Koneksi WiFi — ESP32 dihubungkan ke jaringan WiFi kampus Universitas
Dinamika.
e) Koneksi MQTT — ESP32 diuji untuk melakukan publish dan subscribe

pesan, misalnya pada topik “esp32/buzzer”” untuk memicu buzzer.

20

Hasil pengujian menunjukkan buzzer dapat berbunyi sesuai perintah dari broker

MQTT, sehingga komunikasi antara perangkat dan server berjalan dengan baik.

4.2.3 Perancangan Rangkaian
Rangkaian sistem yang dirancang terdiri atas:

1) Pin /O 15 ESP32 terhubung ke buzzer low level trigger.

2) ESP32 terkoneksi ke jaringan WiFi kampus untuk komunikasi dengan
broker MQTT.

3) Catu daya ESP32 diperoleh dari adaptor atau USB 5V.

Catatan implementasi:
1) Akuarium fisik tidak digunakan pada tahap ini.
2) Sistemdiuji dalam bentuk simulasi, dengan ketentuan sebagai berikut:
a) Buzzer berfungsi sebagai simulasi aktuator pemberian pakan.
b) EEPROM menyimpan jadwal pemberian pakan.
c) Timer berbasis fungsi millis() digunakan untuk pengaturan waktu.
d) Aplikasi smartphone atau MQTT Dashboard (HiveMQ) digunakan untuk
mengatur/reset jadwal dan memantau status buzzer.
Dari hasil perancangan, rangkaian dapat berfungsi sesuai dengan logika kontrol
yang telah ditentukan.
4.2.4 Pengujian Rangkaian
Pengujian sistem dilakukan dengan skenario sebagai berikut:

1. Jadwal pemberian pakan disimulasikan melalui server MQTT.

2. Saat jadwal tercapai, broker MQTT mengirimkan pesan ke ESP32.

3. ESP32 kemudian memicu buzzer untuk berbunyi sebagai notifikasi.

4. Buzzer berperan sebagai alarm simulasi agar dosen maupun mahasiswa
mengetahui waktu pemberian pakan, tanpa memerlukan pemantauan
langsung ke akuarium.

Implementasi simulasi di ruang dosen S1 Teknik Komputer Universitas Dinamika:

a) Perangkat yang digunakan adalah ESP32 DevKit V1 dan buzzer low level

trigger.

b) Komunikasi dilakukan melalui WiFi kampus dengan broker MQTT
(HiveMQ Dashboard/Smartphone App).

21

c) Akuarium fisik tidak digunakan, seluruh proses berbasis simulasi jadwal dan
status buzzer.
d) Status sistem dapat dipantau secara real-time melalui dashboard MQTT.

4.3. Rangkaian Skematik Untuk Simulasinya

amm "DIRX @
D12RX '#f

- 02/12 @
= BN 1op10 @)
RST @

EN @

HOTOR @

3v3 &

Gambar 4.3 Rangkaian Skematik

Pada Kerja Praktik dengan judul “Monitoring Notifikasi Jadwal Pemberian
Pakan Ikan Akuarium Menggunakan ESP32 dan Buzzer Berbasis MQTT di Ruang
Dosen S1 Teknik Komputer Universitas Dinamika”, rangkaian sistem dirancang
dalam bentuk simulasi tanpa menggunakan akuarium fisik. Simulasi ini
menggunakan ESP32 DevKit V1 sebagai mikrokontroler utama yang terhubung ke

buzzer low-level trigger, jaringan WiFi kampus, serta broker MQTT.

4.3.1 Komponen yang Terlibat

A. ESP32 DevKit VI — Bertugas sebagai pengendali utama, mengatur
penjadwalan, manajemen EEPROM, serta komunikasi dengan broker
MQTT.

B. Buzzer Low-Level Trigger — Berfungsi sebagai simulasi aktuator
pemberian pakan, yang akan berbunyi saat pin ESP32 berada pada kondisi
logika LOW.

C. Kabel Jumper Male-to-Male — Digunakan untuk menghubungkan pin I/O
ESP32 dengan buzzer.

22

1

4.3.2 Sistem Penjadwalan dan Manajemen EEPROM

EEPROM dipakai untuk menyimpan konfigurasi jadwal pemberian pakan,

dengan alokasi address sebagai berikut. Tabel address dan Fungsi EEPROM

dilihat di bawah ini :
Tabel 4.3.2 Address dan Fungsi EEPROM

Address | Fungsi Nilai Keterangan
Default
0 Banyaknya bunyi buzzer | 2 Dapat diubah melalui aplikasi
per hari MQTT

4 Lamanya bunyi buzzer (ms) | 500 Durasi buzzer berbunyi

8 Reset Banyak 2 Digunakan saat perintah “Reset
Jadwal”

12 Reset LamaMS 500 Digunakan saat perintah “Reset
Jadwal”

4.3.3 Koneksi WiFi dan MQTT

A. WiFi

1) Koneksi dilakukan pada fungsi setup().
2) Koneksi dicek secara periodik setiap 30 detik. Jika terputus, ESP32 akan

melakukan reconnect otomatis.
B. MQTT
1) MQTT bergantung pada koneksi WiFi yang aktif.
2) Status koneksi dicek setiap 10 detik.
3) MQTT digunakan untuk publish dan subscribe dengan topik tertentu,

misalnya:

4.3.4 Aplikasi Smartphone IOT MQTT PANEL

Status buzzer (aktif/mati).

Perintah “Ubah Jadwal” atau “Reset Jadwal”.

Informasi yang ditampilkan:

a) Waktu hitung mundur dalam format jam:menit:detik (2 digit).

23

2)

b) Status buzzer (aktif/mati).

Fitur utama:

a) Ubah Jadwal — input jumlah bunyi buzzer (Banyak) dan durasi bunyi
(LamaMS) yang kemudian disimpan ke EEPROM.

b) Reset Jadwal — mengembalikan konfigurasi jadwal ke nilai default yang
tersimpan di EEPROM.

Dengan demikian, rangkaian skematik simulasi ini berhasil membuktikan bahwa
integrasi antara ESP32, buzzer, EEPROM, serta komunikasi berbasis MQTT dapat
berjalan sesuai dengan logika sistem yang dirancang. Implementasi fisik dengan
akuarium dapat dilakukan pada tahap selanjutnya apabila fasilitas tersedia. Sebelum
melanjutkan ke tahap pembuatan proyek akhir, terlebih dahulu dilakukan
penjelasan secara lebih detail mengenai proses perancangan dan pelaksanaan

proyek akhir yang telah dibuat.

4.4 Studi Literatur

Dalam penelitian ini, sistem monitoring notifikasi jadwal pemberian pakan
ikan akuarium berbasis 10T menggunakan beberapa komponen utama yang saling
terintegrasi. Komponen utama yang digunakan adalah ESP32 yang berfungsi
sebagai mikrokontroler sekaligus pusat pengendali. ESP32 memiliki prosesor
ganda, dilengkapi modul WiFi dan Bluetooth terintegrasi, serta mendukung
berbagai protokol komunikasi sehingga sangat sesuai untuk implementasi Internet
of Things (loT).

Selain itu, sistem menggunakan buzzer Low Level Trigger sebagai media
notifikasi suara. Buzzer akan aktif ketika menerima logika rendah (LOW) dan dapat
diatur pola bunyinya menggunakan fungsi delay maupun millis agar durasi dan
interval notifikasi dapat disesuaikan sesuai kebutuhan.

Untuk mendukung penyimpanan data, digunakan EEPROM yang memungkinkan
penyimpanan informasi seperti jadwal pemberian pakan ataupun konfigurasi sistem
yang tetap tersimpan meskipun perangkat dimatikan. Sementara itu, koneksi

jaringan memanfaatkan WiFi yang sudah tertanam pada ESP32, sehingga perangkat

24

dapat terhubung ke internet dan melakukan komunikasi data secara real-time.
Protokol yang digunakan adalah MQTT (Message Queuing Telemetry Transport),
protokol komunikasi ringan yang banyak digunakan pada aplikasi 10T. MQTT
memungkinkan ESP32 mengirim status maupun notifikasi jadwal pemberian pakan
ke broker, yang kemudian diteruskan ke perangkat lain seperti komputer atau
smartphone untuk keperluan monitoring.

Dengan integrasi ESP32, buzzer, EEPROM, WiFi, dan protokol MQTT,
sistem mampu memberikan notifikasi jadwal pemberian pakan ikan akuarium
secara efektif dan real-time. Aktivasi buzzer diatur menggunakan delay maupun
millis sehingga durasi dan interval bunyi dapat disesuaikan. Pengaturan ini
terintegrasi dengan penyimpanan data di EEPROM, konektivitas WiFi, serta
protokol komunikasi MQTT. Implementasi sistem ini dilakukan sebagai bentuk
penerapan konsep loT dalam lingkungan akademik, khususnya di ruang dosen S1
Teknik Komputer Universitas Dinamika.

4.4.1 Mempelajari EEPROM

Memori non-volatile yang disebut EEPROM (Electrically Erasable Programmable
Read-Only Memory) memiliki kemampuan untuk menyimpan data meskipun
perangkat tidak memiliki pasokan listrik. EEPROM biasanya ada di dalam
mikrokontroler, seperti ATmega328 di Arduino UNO, atau dapat dimasukkan ke
chip eksternal melalui antarmuka 12C, seperti 24C02 dan 24C256. Meskipun
memiliki batas siklus tulis atau hapus (sekitar 100.000 hingga 1.000.000 Kali),
EEPROM memiliki kelebihan bahwa data dapat ditulis dan dibaca berkali-kali
(Arduino, 2023; Banzi & Shiloh, 2014).
Karakteristik utama EEPROM adalah sebagai berikut:
1) Non-volatile — data tetap tersimpan meskipun perangkat dimatikan.
2) Akses per byte — memungkinkan pembacaan atau penulisan data pada
alamat tertentu.
3) Proses penulisan lebih lambat daripada RAM atau Flash
4) Batas umur pemakaian — tidak cocok untuk aplikasi yang membutuhkan
penulisan data terus-menerus (Atmel, 2016).
Fungsi dan Contoh Penggunaan EEPROM:
a) Menyimpan password WiFi ESP32.

25

b) Menyimpan nilai ambang sensor, misal sensor MQ2 atau suhu.

c) Menyimpan kalibrasi sensor.

d) Mencatat jumlah pakan ikan terakhir (automatic feeder).

e) Menyimpan log status relay, motor, atau buzzer (Espressif Systems, 2023).

Cara Penggunaan:
I. Arduino Uno/Nano/Mega — library EEPROM sudah tersedia:
#include <EEPROM.h>
ii. ESP8266/ESP32 — EEPROM disimulasikan di Flash:
EEPROM.begin(size);
EEPROM. commit();

Untuk perbandingan singkat terkait Penggunaan EEPROM untuk board
Arduino UNO/Nano/Mega dan ESP 8266/ ESP32 dapat dilihat di bawah ini:
Tabel 4.4.1 Perbandingan Singkat Penggunaan EEPROM

Board Library Inisialisasi Commit

Arduino | #include Tidak perlu Tidak perlu
Uno/Nano/Meg | <EEPROM. h

a >
ESP8266/ESP3 | #include EEPROM.begin(size | EEPROM.commit(
2 <EEPROM.h |))

>

Penulisan dan Pembacaan Data EEPROM:
a) EEPROM.write(address, value) — menyimpan 1 byte.
b) EEPROM.put(address, value) — menyimpan tipe data kompleks (int,
float, struct).
c) EEPROM.read(address) — membaca 1 byte.
d) EEPROM.get(address, value) — membaca data tipe kompleks.

26

4.4.2 Mempelajari Koneksi WiFi

ESP32 dan ESP8266 memiliki modul WiFi bawaan, memungkinkan
koneksi nirkabel tanpa modul tambahan (Espressif Systems, 2023).
Mode utama WiFi:
A. Station Mode (STA) — ESP32 bertindak sebagai klien yang terhubung ke
router.
Mengirim/menerima data, akses server, komunikasi antar perangkat.
#include <WiFi.h>
const char* ssid = "NAMA_WIFI";
const char* password = "PASSWORD WIFI";
void setup() {
Serial.begin(115200);
WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) delay(5090);
Serial.println(WiFi.localIP());

}
void loop() {}

B. Access Point Mode (AP) — ESP32 membuat hotspot sendiri.
WiFi.softAP("ESP32_AP","12345678");
Serial.println(WiFi.softAPIP());

C. Mode Ganda (STA + AP) — terhubung ke router dan membuat hotspot
sekaligus.
WiFi.mode(WIFI_AP_STA);
WiFi.begin(routerSsid, routerPassword);

WiFi.softAP(apSsid, apPassword);
Aplikasi setelah terkoneksi:

I. Mengirim data ke server/database 10T.

ii. Menjalankan web server.

27

ii. Menggunakan MQTT untuk komunikasi real-time.

iv. Remote control, misal menyalakan buzzer pemberitahuan jadwal pakan ikan.

4.4.3 Konsep Dasar MQTT dan Implementasinya pada ESP32/ESP8266

1. Pahami Konsep Dasar

MQTT (Message Queuing Telemetry Transport) adalah protokol
komunikasi ringan berbasis publish/subscribe, yang dirancang untuk aplikasi
loT karena hemat bandwidth dan responsif (Banks & Gupta, 2014). Kapan
digunakan: Cocok untuk perangkat 10T seperti ESP32, sensor, dan smart home.

Komponen utama:

Broker — pusat distribusi pesan, contohnya Mosquitto atau HiveMQ.
Client Publisher — perangkat yang mengirim data.

Client Subscriber — perangkat yang menerima data.

w0 npoE

Topic — saluran atau label pesan, misalnya sensor/suhu atau rumah/lampu.

2. Library MQTT (Step by Step)

A. PubSubClient (Arduino/ESP32/ESP8266)

Library ini paling sering digunakan di Arduino IDE karena ringan dan mudah
digunakan, dapat berfungsi sebagai Publisher maupun Subscriber, serta
kompatibel dengan WiFi.h (ESP32) atau ESP8266WiFi.h (ESP8266)
(PubSubClient Library, 2023).

Contoh Kode Dasar:
##include <WiFi.h>

#include <PubSubClient.h>
// WiFi

const char* ssid = "NAMA_WIFI";
const char* password = "PASSWORD_ WIFI";

28

// MQTT Broker

const char* mqtt_server = "broker.hivemqg.com";

const int mgtt_port = 1883;
WiFiClient espClient;
PubSubClient client(espClient);

// Callback untuk menerima pesan
void callback(char* topic, byte* message,
length) {
Serial.print("Pesan dari topic: ");
Serial.println(topic);
Serial.print("Isi: ");
for (int i = 0; 1 < length; i++) {
Serial.print((char)message[i]);

by
Serial.println();

e Fungsi utama: client.publish() untuk

client.subscribe() untuk menerima pesan.

unsigned int

mengirim pesan,

e Perlu koneksi WiFi sebelum menggunakan broker (WiFi.begin(ssid,

password)).

B. AsyncMqttClient (ESP32/ESP8266)

Library ini bersifat non-blocking, sehingga loop ESP32 tidak macet saat menangani

banyak topic atau menjalankan webserver bersamaan. Cocok untuk proyek real-
time (ESPAsyncTCP/AsyncTCP) (AsyncMqttClient Library, 2023).

Contoh Kode Singkat:
#include <WiFi.h>

#include <AsyncMqgttClient.h>

AsyncMgttClient mgttClient;

29

void onMgttMessage(char* topic, char* payload,
AsyncMqgttClientMessageProperties properties,
size_t len, size_t index, size_t total) {
Serial.print("Pesan dari topic: ");
Serial.println(topic);
for (size_t i =0; i < len; i++) {
Serial.print((char)payload[i]);

¥
Serial.println();

mgttClient.publish() — mengirim pesan secara asinkron.

Lebih cepat dan stabil untuk menangani banyak topik sekaligus.

3. Eclipse Mosquitto
Mosquitto adalah broker MQTT open-source yang berfungsi sebagai perantara
antara publisher dan subscriber (Eclipse Mosquitto, 2023).
i. Cara Kerja:
1. Publisher mengirim data ke broker pada topik tertentu.
2. Broker menerima pesan dan menyimpannya sesuai topik.
3. Subscriber yang subscribe ke topik akan menerima pesan tersebut.
ii. Keunggulan Mosquitto:
a. Ringan & cepat, cocok untuk perangkat dengan sumber daya terbatas.
b. Open-source & gratis, banyak digunakan di industri dan penelitian.
c. Mendukung QoS (Quality of Service):
o QoS 0 — kirim sekali tanpa jaminan diterima.
o QoS 1 — kirim minimal sekali dengan konfirmasi.
o QoS 2 — kirim tepat sekali (paling aman).
d. Dapat dijalankan di Windows, Linux, macOS, bahkan Raspberry Pi.

30

e. Mendukung autentikasi (username/password) dan TLS/SSL untuk

keamanan.

4. Contoh Kasus Penerapan MQTT
Misalnya membuat alat monitoring suhu dan asap dengan ESP32:
a) ESP32 (Publisher) mengirim data suhu ke topic rumah/suhu.
b) ESP32 lain atau aplikasi smartphone (Subscriber) menerima update real-
time.
c) Dapat ditambahkan aturan otomatis, misal jika suhu tinggi, buzzer menyala

melalui subscriber.

4.5 Pengujian Buzzer Low Level Trigger
4.5.1 Tujuan Pengujian
Tujuan dari pengujian ini adalah untuk memastikan bahwa modul buzzer aktif
rendah (low level trigger) yang digunakan pada sistem ESP32 dapat bekerja secara
optimal dan sesuai dengan prinsip kerja logika pemicunya. Modul buzzer ini
menggunakan sistem low level trigger, artinya buzzer akan menyala ketika
menerima logika LOW (0) dan mati ketika menerima logika HIGH (1) dari
mikrokontroler. Secara umum, pengujian ini memiliki beberapa tujuan utama
sebagai berikut:

1. Memverifikasi fungsi dasar buzzer aktif rendah
Pengujian dilakukan untuk memastikan bahwa buzzer dapat berbunyi ketika
diberikan logika LOW dan berhenti ketika diberikan logika HIGH. Hal ini
penting karena beberapa jenis buzzer memiliki logika kerja yang berbeda (high
trigger atau low trigger), sehingga verifikasi diperlukan untuk menghindari
kesalahan logika kontrol.

2. Menguji pengendalian waktu bunyi dan diam menggunakan fungsi
delay()Tahap awal pengujian bertujuan memastikan bahwa sistem mampu
mengatur durasi buzzer menyala dan mati secara bergantian dengan
menggunakan fungsi penundaan sederhana delay (). Hal ini digunakan untuk

memahami dasar timing dalam kontrol aktuator.

31

Menguji metode kontrol non-blocking menggunakan fungsi millis()
Pengujian ini dilakukan untuk memastikan sistem dapat mengatur waktu kerja
buzzer tanpa menghentikan proses lain pada mikrokontroler. Dengan metode
millis(), sistem dapat melakukan multitasking seperti membaca sensor,
mengirim data, atau menjaga koneksi WiFi/MQTT tanpa terganggu oleh jeda
delay.
Menguji penyimpanan konfigurasi durasi buzzer menggunakan EEPROM
Tujuan selanjutnya adalah memastikan bahwa durasi bunyi buzzer dapat
disimpan secara permanen di dalam EEPROM, sehingga meskipun perangkat
dimatikan atau di reset, nilai konfigurasi tersebut tetap tersimpan dan digunakan
kembali pada saat perangkat dinyalakan ulang.
Menguji kemampuan sistem dalam mengubah pola bunyi melalui input Serial
Sistem diuji agar mampu menerima perintah dari pengguna melalui Serial
Monitor untuk mengubah pola bunyi (misalnya pola a, b, atau ¢) dengan variasi
waktu ON dan OFF yang berbeda. Hal ini menunjukkan fleksibilitas sistem
dalam pengaturan pola kerja aktuator tanpa perlu memodifikasi kode program.
Menguji konektivitas dan kontrol jarak jauh melalui protokol MQTT. Pengujian
ini bertujuan memastikan buzzer dapat dikendalikan secara real-time melalui
jaringan WiFi dan protokol MQTT, dengan topik tertentu untuk subscribe dan
publish. Hal ini membuktikan bahwa sistem buzzer telah terintegrasi dengan
konsep 10T (Internet of Things) dan dapat menerima perintah dari server atau
aplikasi jarak jauh.
Menilai stabilitas dan konsistensi kerja buzzer selama operasi jangka panjang
Pengujian juga dilakukan untuk mengamati apakah buzzer tetap dapat
beroperasi stabil dalam jangka waktu tertentu, tanpa mengalami delay yang
tidak diinginkan atau kesalahan logika akibat penggunaan metode waktu yang
berbeda.

Dengan demikian, secara keseluruhan, pengujian ini tidak hanya berfokus
pada fungsi dasar buzzer, tetapi juga menilai keandalan, fleksibilitas, dan
integrasi sistem kontrol berbasis ESP32 baik secara lokal maupun melalui

jaringan loT. Hasil pengujian ini akan menjadi dasar dalam menentukan

32

keefektifan rangkaian dan program dalam implementasi sistem notifikasi

berbasis buzzer.

4.5.2 Alat dan Bahan

Pada tahap pengujian buzzer low level trigger ini, digunakan beberapa alat
dan bahan untuk mendukung proses perancangan, pemrograman, serta
pengujian sistem berbasis ESP32. Adapun alat dan bahan yang digunakan
dijelaskan sebagai berikut:

1. Alat

Alat yang digunakan dalam pengujian berfungsi untuk membantu proses
perakitan, pemrograman, dan pemantauan hasil pengujian sistem buzzer.

Berikut daftar alat yang digunakan bisa dilihat Pada tabel di bawah ini:

Tabel 4.5.2 Nama Alat dan Fungsi

No Nama Alat Fungsi

1 Laptop Digunakan untuk menulis kode program,
melakukan kompilasi, serta mengunggah program
ke mikrokontroler ESP32 menggunakan software
Arduino IDE.

2 | Kabel Data USB | Sebagai media penghubung antara laptop dan
Micro USB board ESP32 untuk proses upload program dan

komunikasi serial.

3 | Kabel Jumper (Male | Digunakan untuk menghubungkan pin ESP32
to Female) (Male to | dengan pin pada modul buzzer secara fleksibel.
Male)

(Female to Female)

4 | Koneksi WiFi Lokal Diperlukan untuk melakukan pengujian sistem
berbasis 10T yang melibatkan koneksi MQTT

secara real-time.

33

2. Bahan

Bahan yang digunakan terdiri atas perangkat keras dan perangkat lunak
pendukung sistem. Setiap bahan memiliki peran penting dalam pengujian fungsi
buzzer berbasis ESP32. Berikut daftar bahan yang digunakan bisa dilihat Pada

tabel di bawah ini:

Tabel 4.5.2 Nama Bahan, Spesifikasi, dan Fungsi

No Nama Spesifikasi Fungsi
Bahan
1 ESP32 Dolt DevKit V1 Mikrokontroler Berfungsi sebagai pusat

dengan prosesor dual- | kendali sistem yang
core 240 MHz, Wi-Fi | mengatur logika kerja
802.11 b/g/n, | buzzer dan komunikasi
Bluetooth v4.2, dan | jaringan.

GPI10 multifungsi

2 Modul Buzzer Aktif | Tegangan kerja 3.3V — | Sebagai aktuator yang
(Low Level Trigger) 5V menghasilkan bunyi saat
menerima logika LOW

dari ESP32.
3 Software Arduino | Versi 2.x atau terbaru | Sebagai platform
IDE pemrograman untuk

menulis, mengunggah,
dan memantau hasil
program melalui Serial

Monitor.

4 Library

Tambahan

. - Untuk menyimpan dan
EEPROM.h membaca data

konfigurasi buzzer

34

(misalnya durasi

bunyi) secara
permanen di memori

internal ESP32.

* WiFi.h

Untuk
menghubungkan
ESP32 ke
WiFi

jaringan
lokal dalam

komunikasi 10T.

PubSubClient.h

Untuk
mengimplementasikan
komunikasi MQTT
antara ESP32
broker I0T.

dan

Broker MQTT:
broker.hivemg.com
Untuk pengujian Buzzer
Low Level Trigger Atau
mqtt.dinamika.ac.id

Untuk project akhir

Public MQTT broker

Digunakan sebagai
perantara (server) untuk
komunikasi pesan antara
ESP32 dan perangkat
atau aplikasi lain melalui

protokol MQTT.

4.5.3 Deskripsi Singkat Komponen Utama

Pada pengujian sistem buzzer berbasis ESP32 Dolt DevKit V1, terdapat

beberapa komponen utama yang saling terintegrasi untuk membentuk sistem

kontrol berbasis Internet of Things (1oT). Masing-masing komponen memiliki

peran penting dalam memastikan sistem dapat berfungsi secara optimal. Berikut

adalah penjelasan dari setiap komponen utama:
a. ESP32 Dolt DevKit V1

ESP32 merupakan mikrokontroler generasi lanjutan yang dikembangkan

oleh Espressif Systems, dan menjadi penerus dari seri ESP8266 dengan

35

kemampuan yang lebih tinggi. Menurut Mischianti (n.d.), ESP32 dilengkapi dengan
prosesor dual-core Tensilica LX6 berkecepatan hingga 240 MHz, memori SRAM
internal, serta dukungan konektivitas Wi-Fi 802.11 b/g/n dan Bluetooth v4.2
(Classic dan BLE).

Dalam pengujian ini, ESP32 berfungsi sebagai pusat pengendali utama yang:

1. Mengatur kondisi ON/OFF buzzer berdasarkan sinyal logika digital
(LOW/HIGH).

2. Menyimpan konfigurasi durasi bunyi buzzer di EEPROM, agar data tetap
tersimpan meskipun perangkat di reset.

3. Mengatur komunikasi jaringan menggunakan protokol Wi-Fi dan MQTT,

untuk memungkinkan kontrol jarak jauh melalui broker HiveMQ.

Selain itu, ESP32 dipilih karena memiliki kemampuan pemrosesan yang cepat, port
input/output (GPIO) yang fleksibel, serta kompatibilitas tinggi dengan Arduino

IDE, sehingga mempermudah proses pemrograman dan integrasi perangkat.
b. Modul Buzzer Aktif Low (Low Level Trigger)

Modul buzzer aktif low merupakan aktuator audio yang menghasilkan suara
ketika menerima logika digital LOW (0V) dan berhenti berbunyi ketika
menerima logika HIGH (3.3V). Jenis buzzer ini disebut low level trigger, karena

aktif saat tegangan rendah.
Dalam sistem ini:

a) Ketika ESP32 memberikan sinyal LOW — buzzer ON (berbunyi).
b) Ketika ESP32 memberikan sinyal HIGH — buzzer OFF (diam).

Karena ESP32 beroperasi pada tegangan logika 3.3V, buzzer tipe ini
sangat cocok digunakan karena tidak membutuhkan arus besar dan tetap
dapat bekerja stabil tanpa transistor tambahan. Buzzer ini berfungsi sebagai
indikator suara dalam sistem notifikasi, yang digunakan untuk memberi

tanda atau peringatan berdasarkan program yang dijalankan.

c. Koneksi Wi-Fi Lokal dan Broker MQTT (HiveMQ)

36

Dalam pengujian ini, ESP32 dihubungkan ke jaringan Wi-Fi lokal agar
dapat berkomunikasi secara nirkabel dengan broker MQTT, yaitu broker publik
HiveMQ yang beralamat di broker.hivemq.com, untuk pengujian sebelum tahap
ke project akhir,

Broker MQTT berfungsi sebagai server komunikasi loT tempat ESP32
mengirim dan menerima pesan melalui topik tertentu.

a) Topik Subscribe: esp32/buzzer — digunakan untuk menerima perintah ON
atau OFF dari pengguna atau aplikasi jarak jauh.
b) Topik Publish: esp32/status — digunakan untuk mengirim status buzzer

(aktif/mati) ke server.

Dengan sistem ini, ESP32 dapat dikontrol secara real-time melalui internet,
sehingga konsep Internet of Things (IoT) benar-benar diterapkan pada

pengujian buzzer low level trigger ini.

4.5.4 Skema Hubungan Fisik Rangkaian

Pada pengujian ini, komponen ESP32 dan buzzer dihubungkan dalam
rangkaian sederhana dengan konfigurasi kabel sebagai berikut ada di tabel
bawabh ini.

Tabel 4.5.4 Komponen Buzzer, Terhubung ke ESP32, dan Fungsi

Komponen Terhubung ke | Fungsi
Buzzer ESP32
VCC 3.3V Sebagai sumber tegangan utama

untuk mengaktifkan modul buzzer.

GND GND Jalur ground untuk melengkapi

rangkaian arus listrik.

IN (Input Sinyal) | GPIO 15 Jalur kontrol sinyal digital dari
ESP32 untuk menyalakan atau

mematikan buzzer.

37

Penjelasan Pemilihan GPIO 15

Pin GPIO 15 dipilih karena merupakan pin output yang aman dan stabil

digunakan untuk aplikasi kontrol digital. Pin ini tidak memengaruhi proses

booting ESP32 dan dapat menghasilkan sinyal logika HIGH/LOW dengan cepat

dan konsisten. Selain itu, GPIO 15 mendukung arus keluaran yang cukup untuk

mengaktifkan buzzer aktif tanpa perlu menggunakan transistor tambahan.

Prinsip Kerja Rangkaian

1.

Ketika ESP32 memberikan sinyal LOW (0V) pada pin GPIO 15, maka
buzzer aktif dan menghasilkan bunyi.

Ketika sinyal berubah menjadi HIGH (3.3V), buzzer akan mati.

Program pada ESP32 mengatur durasi bunyi dan diam dengan fungsi
delay() ataumillis().

Konfigurasi durasi dapat disimpan di EEPROM dan diubah melalui Serial
Monitor atau perintah jarak jauh lewat MQTT.

4.5.5 Langkah Pengujian

Pengujian dilakukan melalui beberapa skenario program untuk
memastikan bahwa buzzer aktif low bekerja sesuai logika pemicu yang
diinginkan, serta dapat merespons dengan tepat terhadap sinyal digital dari
ESP32 Dolt DevKit V1. Tahap awal dilakukan pengujian dasar untuk
memastikan fungsi utama buzzer, yaitu bekerja pada logika LOW (menyala)
dan berhenti pada logika HIGH (mati).

4.5.6 Pengujian Buzzer 1 Detik ON — 1 Detik OFF

Pada skenario pertama ini, buzzer diuji dengan menyalakan dan
mematikannya secara bergantian setiap 1 detik, menggunakan fungsi
delay() pada mikrokontroler ESP32. Tujuan pengujian ini adalah untuk
memverifikasi respon buzzer terhadap logika HIGH dan LOW serta
memastikan bahwa pin GPIO 15 berfungsi dengan baik sebagai output

kontrol.

38

Kode Program Pengujian Dasar:

void setup() {

pinMode (BUZZER_PIN, OUTPUT);

low trigger)

}

void loop() {
digitalWrite(BUZZER_PIN, LOW);
delay(1000);
digitalWrite(BUZZER_PIN, HIGH);

delay(1000);

#define BUZZER_PIN 15 // ganti dengan pin yang dipakai

digitalWrite(BUZZER_PIN, HIGH); // buzzer mati (karena

// buzzer ON
// tunggu 1 detik
// buzzer OFF

// tunggu 1 detik

Penjelasan Program Pengujian Buzzer Aktif Low

Program ini digunakan untuk mengaktifkan dan menonaktifkan buzzer

secara bergantian dengan interval waktu 1 detik menggunakan fungsi delay().

Buzzer yang digunakan bertipe aktif low (low level trigger), artinya buzzer akan

menyala saat menerima logika LOW (0V) dan mati saat menerima logika HIGH

(3.3V) dari mikrokontroler ESP32.
1. Bagian Inisialisasi Pin

Pada bagian awal program terdapat perintah:

39

#define BUZZER_PIN 15

Baris ini mendefinisikan pin GP1O 15 sebagai jalur yang digunakan untuk
mengontrol buzzer. Dengan cara ini, pemrograman menjadi lebih mudah
karena nama BUZZER_PIN bisa langsung dipanggil di seluruh program
tanpa perlu menulis angka pin secara berulang. GPIO
15 dipilih karena merupakan pin aman untuk output dan tidak mengganggu
proses booting ESP32.

2. Bagian Setup

Bagian setup() dijalankan satu kali saat perangkat pertama kali
dinyalakan. Perintah pinMode(BUZZER_PIN, OUTPUT); mengatur pin
GPIO 15 menjadi pin keluaran, sehingga ESP32 dapat memberikan sinyal
logika HIGH (3.3V) atau LOW (0V) ke buzzer. Kemudian, perintah
digitalWrite(BUZZER_PIN, HIGH); mengirimkan logika HIGH ke pin
tersebut. Karena buzzer bertipe aktif low, maka logika HIGH akan membuat
buzzer mati atau diam. Tujuannya agar saat ESP32 dinyalakan pertama Kkali,

buzzer tidak langsung berbunyi.
3. Bagian Loop

Fungsi loop() akan berjalan berulang-ulang tanpa henti selama
perangkat menyala. Pada bagian ini, buzzer dikendalikan secara bergantian

antara kondisi ON dan OFF menggunakan logika digital dan waktu tunda
(delay()).

e digitalWrite(BUZZER_PIN, LOW); memberikan logika LOW (0V) ke

pin, sehingga buzzer menyala (berbunyi).

e delay(1000); memberikan jeda waktu 1 detik (1000 milidetik) sebelum

instruksi berikutnya dijalankan.

e digitalWrite(BUZZER_PIN, HIGH); memberikan logika HIGH
(3.3V) ke pin, sehingga buzzer mati (diam).

e delay(1000); memberijeda 1 detik lagi sebelum siklus pengulangan

dimulai kembali.

40

Dengan demikian, buzzer akan berbunyi selama 1 detik, lalu diam 1 detik,

secara terus-menerus.

4. Prinsip Kerja Program

Program ini memanfaatkan fungsi delay() untuk mengatur waktu
nyala dan mati buzzer. Meskipun cara ini sederhana dan efektif untuk
pengujian dasar, metode ini bersifat blocking, artinya selama delay()
berjalan, mikrokontroler tidak dapat menjalankan proses lain. Namun, untuk
uji awal seperti memastikan logika kerja buzzer, metode ini sudah cukup

efektif dan mudah dipahami.

Kesimpulan Penjelasan

1)

2)
3)
4)
5)

Tujuan program: menguji respon buzzer terhadap sinyal logika HIGH dan
LOW.

Hasil: buzzer berbunyi saat logika LOW dan diam saat logika HIGH.
Interval kerja: 1 detik bunyi dan 1 detik diam.

Pin kontrol: GP10O 15, aman digunakan pada ESP32.

Metode waktu: menggunakan fungsi delay() dengan nilai 2000 milidetik.

4.5.7 Pengujian Buzzer Menyala Setiap 10 Detik Sekali

1. Tujuan Pengujian

Tujuan dari pengujian ini adalah untuk memastikan buzzer aktif low
dapat diatur menyala secara periodik dengan interval waktu tertentu, yaitu
berbunyi selama 0,5 detik setiap 10 detik sekali. Pengujian ini juga berfungsi
untuk menguji akurasi fungsi waktu delay () dalam menghasilkan periode
kerja yang stabil, serta memverifikasi kestabilan logika digital dari pin
GPIO 15 pada ESP32 sebagai pin kendali buzzer.

2. Kode Program Pengujian

#define BUZZER_PIN 15 // pin buzzer

void setup() {

41

pinMode (BUZZER_PIN, OUTPUT);

digitalWrite(BUZZER_PIN, HIGH); // buzzer

(karena Llow trigger)

}

void loop() {

// & Hidupkan buzzer selama 0.5 detik

digitalWrite(BUZZER_PIN, LOW); // buzzer ON

detik

// ® Matikan buzzer

digitalWrite(BUZZER_PIN, HIGH); // buzzer OFF

delay(9500);

delay(500); // 500 ms =

// Tunggu 9.5 detik agar total siklus = 10 detik

OFF

0.5

3.Penjelasan Program
i. Inisialisasi Pin
#define BUZZER_PIN 15

Mendefinisikan pin GPIO 15 sebagai jalur kontrol buzzer. Jika
posisi pin buzzer diubah, pengguna cukup mengganti angka ini tanpa perlu

mengubah logika program.

pinMode (BUZZER_PIN, OUTPUT);

42

Mengatur pin GP10 15 sebagai output, agar ESP32 dapat memberikan sinyal digital
HIGH/LOW ke modul buzzer.

digitalWrite(BUZZER_PIN, HIGH);

Memberikan logika HIGH (3.3V) ke pin buzzer sehingga buzzer dalam kondisi

mati, karena modul buzzer ini bertipe low level trigger.

v
a)
b)

b)

d)

Karakteristik modul buzzer aktif low:
LOW (0V) — Buzzer menyala (berbunyi).

HIGH (3.3V) — Buzzer mati (diam).
Logika Kerja Utama (Loop Program)

digitalWrite(BUZZER_PIN, LOW);

Mengirim sinyal LOW ke buzzer — buzzer hidup.

delay(500);
Memberikan jeda waktu 500 milidetik (0,5 detik) saat buzzer menyala.

digitalWrite(BUZZER_PIN, HIGH);

Mengirim sinyal HIGH — buzzer mati.

delay(9500);

Memberikan jeda waktu 9,5 detik sebelum siklus diulang.

Dengan pengaturan waktu di atas, total satu siklus kerja buzzer menjadi 10 detik:

1) Bunyi 0,5 detik,
2) Diam 9,5 detik,

3) Lalu berulang secara terus-menerus.

43

lii. Analisis Waktu dan Sinyal
1) Periode Siklus (T)

Periode merupakan waktu yang dibutuhkan untuk satu kali siklus lengkap,
yaitu saat buzzer menyala (aktify dan mati (diam).
Rumus periode dinyatakan sebagai:

T = tbunyi + tdiam
Dengan:
e tbunyi=0,5 detik
e tdiam=9,5 detik
Maka:
T=0,5+95=10detik

Artinya, buzzer berbunyi setiap 10 detik sekali dalam satu siklus penuh.
Menurut Zenius (2021), periode merupakan waktu yang dibutuhkan suatu
getaran atau gelombang untuk menyelesaikan satu siklus penuh sebelum

kembali ke posisi semula.
2) Frekuensi (f)

Hubungan antara frekuensi dan periode mengikuti persamaan dasar fisika

gelombang:
1
f=7
Dengan T=10 detik, diperoleh:
f=L=0,1Hz
10

Artinya, buzzer berbunyi 0,1 kali per detik, atau 1 kali setiap 10 detik. Sejalan
dengan penjelasan Zenius (2021), frekuensi menunjukkan jumlah getaran atau

siklus yang terjadi setiap satu detik, dan satuannya adalah Hertz (Hz).

44

3) Duty Cycle (D)

Duty cycle menunjukkan persentase waktu aktif (bunyi) dibandingkan waktu total

siklus.
Rumusnya:
tbunyi
D= x 100%
T
Dengan nilai:
0,5
= 0,
10 X 100%

Artinya, buzzer hanya aktif selama 5% dari total waktu siklus, dan 95%
sisanya dalam keadaan mati. Duty cycle ini penting untuk mengatur

efisiensi energi serta durasi notifikasi bunyi agar tidak terlalu lama.
» Pola Kerja Sinyal Buzzer

Berdasarkan hasil pengujian program:
a) O Bunyi selama 0,5 detik (logika LOW)

b) (O Diam selama 9,5 detik (logika HIGH)

c) a Ulang terus menerus setiap 10 detik

Pola tersebut menunjukkan bahwa program telah bekerja sesuai dengan

konsep sinyal periodik dan perhitungan waktu yang telah dirumuskan.

45

4.5.8 Pengujian Buzzer Bunyi Setiap 1 Menit Selama 5 Detik

Kode Program:

#define BUZZER_PIN 15 // pin buzzer (low trigger)

// Variabel konfigurasi (bisa diubah sesuai kebutuhan)

unsigned long tBunyi = 5000; // lama bunyi (ms) ->
contoh: 5 detik = 5000
unsigned long tPeriod = 60000; // periode total (ms) -

> contoh: 1 menit = 60000

void setup() {
pinMode (BUZZER_PIN, OUTPUT);
digitalWrite(BUZZER_PIN, HIGH); // buzzer mati saat
mulai (active-low)

}

void loop() {
// Buzzer ON
digitalWrite(BUZZER_PIN, LOW);
delay(tBunyi); // tunggu selama bunyi

// Buzzer OFF

digitalWrite(BUZZER_PIN, HIGH);

delay(tPeriod - tBunyi); // tunggu sisa waktu
agar total = tPeriod

}

» Penjelasan Program
1) Definisi Pin

#define BUZZER_PIN 15

Baris ini mendefinisikan pin GPIO 15 sebagai jalur kontrol buzzer. Jika
pin diganti, cukup ubah angka 15 sesuai dengan pin yang digunakan pada ESP32.
Pin ini dipilih karena termasuk pin output aman yang tidak mengganggu proses
booting mikrokontroler.

2) Variabel Konfigurasi

46

unsigned long tBunyi = 5000; // lama bunyi (ms)
unsigned long tPeriod = 60000; // periode total (ms)

e tBunyi= lama buzzer menyala dalam milidetik (5000 ms = 5 detik).
e tPeriod = periode total antar bunyi (60000 ms = 1 menit).
Waktu buzzer dalam keadaan diam (mati) dihitung dengan rumus:

tdiam = tperiod — thunyi

3) Bagian Setup
pinMode (BUZZER_PIN, OUTPUT);
digitalWrite(BUZZER_PIN, HIGH);

e pinMode(BUZZER_PIN, OUTPUT) — mengatur GPIO 15 menjadi output
digital.
e digitalWrite(BUZZER_PIN, HIGH) — mengirim logika HIGH (3.3V)
agar buzzer mati saat awal.
» Karena buzzer bertipe active-low, maka:
a) LOW (0V) — Buzzer hidup (berbunyi).
b) HIGH (3.3V) — Buzzer mati (diam).
4) Bagian Loop
digitalWrite(BUZZER_PIN, LOW); // buzzer ON
delay(tBunyi); // tunggu selama bunyi
digitalWrite(BUZZER_PIN, HIGH); // buzzer OFF
delay(tPeriod - tBunyi); // tunggu sisa waktu

v Saat logika LOW diberikan, buzzer aktif (berbunyi) selama tBunyi milidetik.
v’ Setelah itu, buzzer dimatikan dengan logika HIGH, lalu menunggu sisa waktu
(tPeriod - tBunyi) agar total waktu per siklus tetap 1 menit.
5) Perhitungan dan Analisis
Misalnya:
v tbunyi=5000ms=5detik

47

v’ tperiod=60000ms=60detik=1menit
v' Maka:

tdiam = tperiod — tbunyi = 60000 — 5000 = 55000 ms = 55 detik

v Artinya:
a) Buzzer ON selama 5 detik.
b) Buzzer OFF selama 55 detik.
c) Pola berulang setiap 1 menit.

Hubungan antara frekuensi (f) dan periode (T) mengikuti persamaan:

\h
Il
~N| -

(Zenius, 2021)

Dengan T = 60 detik, maka:

1

f=7g =0,0167Hz

Frekuensi ini berarti buzzer menyala sekali setiap 60 detik.
Menurut teori gelombang periodik (Zenius, 2021), semakin besar nilai periode,

maka frekuensi bunyi menjadi semakin kecil.

v' Pola Kerja Sistem

a) [Buzzer berbunyi selama 5 detik.
b) (O Buzzer diam selama 55 detik.

c) a Pola ini diulang terus-menerus setiap 1 menit.
Dengan logika ini, sistem menghasilkan sinyal periodik yang stabil dan presisi,

sesuai teori dasar hubungan antara periode dan frekuensi.

48

4.5.9 Kodingan Buzzer Bunyi Menggunakan Millis()

Kode Program:

#define BUZZER_PIN 15 // pin buzzer (low trigger)

// Variabel konfigurasi (bisa diubah sesuai kebutuhan)

unsigned long tBunyi = 5000; // lama bunyi (ms) -> 5 detik =
5000
unsigned long tPeriod = 60000; // periode total (ms) -> 1

menit = 60000

// Variabel internal
unsigned long prevMillis = 0; // waktu terakhir buzzer ON/OFF
bool buzzerState = false; // kondisi buzzer (ON/OFF)

void setup() {
pinMode (BUZZER_PIN, OUTPUT);

digitalWrite(BUZZER_PIN, HIGH); // buzzer OFF saat mulai
(active-1low)

}

void loop() {
unsigned long currentMillis = millis();

unsigned long elapsed = currentMillis - prevMillis;

if (buzzerState) {

// Kalau buzzer sedang ON
if (elapsed >= tBunyi) {
digitalWrite(BUZZER_PIN, HIGH); // matikan buzzer

buzzerState = false;

49

prevMillis = currentMillis; // reset timer
}
} else {
// Kalau buzzer sedang OFF
if (elapsed >= (tPeriod - tBunyi)) {
digitalWrite(BUZZER_PIN, LOW); // hidupkan buzzer
buzzerState = true;

prevMillis = currentMillis; // reset timer

v Penjelasan Program
1) Definisi Pin

#define BUZZER _PIN 15

Menetapkan buzzer pada pin GPIO 15. Penggunaan #define membuat kode
lebih fleksibel — jika pin diganti, cukup ubah angka tanpa memodifikasi bagian
lain program. Pin GPI1O 15 dipilih karena aman digunakan sebagai output digital
pada ESP32 tanpa mengganggu proses booting.
2) Variabel Konfigurasi
unsigned long tBunyi = 5000;
unsigned long tPeriod = 60000;
v tBunyi = durasi buzzer hidup dalam milidetik (5000 ms = 5 detik).

v tPeriod = waktu total satu siklus (60000 ms = 1 menit).

Waktu buzzer dalam keadaan mati (diam) dihitung menggunakan rumus:

tdiam = tperiod — tbunyi

(Sumber: Zenius, 2021)

50

Dengan nilai tersebut:
tdiam = 60000 — 5000 = 55000ms = 55detik

Artinya buzzer akan ON selama 5 detik dan OFF selama 55 detik, berulang setiap
1 menit.

3) Variabel Internal

unsigned long prevMillis = 0;

bool buzzerState = false;

a) prevMillis — menyimpan waktu terakhir perubahan status buzzer.
b) buzzerState . menandakan kondisi buzzer saat ini (true = ON, false
= OFF).
4) Setup Awal
void setup() {
pinMode (BUZZER_PIN, OUTPUT);
digitalWrite(BUZZER_PIN, HIGH);
}
v' pinMode() mengatur pin buzzer sebagai output.
v digitalWrite(HIGH) memastikan buzzer matisaat awal.
Karena buzzer bertipe active-low, maka:
a) LOW (0V) — buzzer menyala (berbunyi).
b) HIGH (3.3V) — buzzer mati (diam).

5) Loop Utama
Program utama tidak menggunakan delay () melainkan fungsi
millis(), sehingga sistem tetap responsif terhadap proses lain seperti
komunikasi sensor atau Wi-Fi.
Logika Program:
a) Menghitung waktu yang telah berlalu (elapsed) sejak perubahan status
terakhir.

b) Jika buzzer ON selama > tBunyi, maka buzzer dimatikan.

o1

c) Jika buzzer OFF selama > (tPeriod — tBunyi), maka buzzer dinyalakan
kembali.
Dengan demikian, satu siklus total tetap 1 menit, tetapi tanpa menghentikan

program utama.

v Alur Kerja Sistem
I. Buzzer awalnya mati (OFF).
ii. Setelah 55 detik, buzzer menyala (ON) selama 5 detik.
lii. Setelah itu, buzzer mati kembali dan siklus diulang terus menerus.

iv. Seluruh waktu dihitung menggunakan millis() secara non-blocking.

» Keunggulan Penggunaanmillis()
a) Non-blocking: ESP32 tetap bisa menjalankan tugas lain sambil menunggu
waktu.
b) Lebih efisien: Tidak menghentikan seluruh sistem seperti delay().
c) Profesional: Digunakan dalam sistem nyata seperti 0T dan kontrol
industri.
Menurut teori fisika tentang periode dan frekuensi (Zenius, 2021), hubungan

antara waktu aktif dan waktu total mengikuti:

1
f=7

Dengan T = 60detik, maka frekuensi sinyal buzzer:
f=0,0167Hz
yang berarti 1 kali bunyi setiap 60 detik.

» Analisis Waktu dan Duty Cycle
Dari hasil pengujian:
e tbunyi = 5detik
e tdiam = 55detik
e T =60detik
Duty cycle dihitung sebagai:
tbunyi 5

o) — — 0f — 0
T X 100% 60)(100/0 8,33%

D =

52

Artinya buzzer hanya aktif 8,33% dari waktu total siklus. Perhitungan ini sesuai
dengan prinsip periode dan frekuensi gelombang periodik sebagaimana dijelaskan
dalam Zenius (2021) bahwa semakin besar periode sinyal, maka frekuensi
bunyinya semakin kecil.

v Kesimpulan Pengujian
Program ini berhasil membuat buzzer menyala 5 detik setiap 1 menit sekali
menggunakan metode non-blocking berbasis millis (). Seluruh logika waktu
bekerja stabil dengan siklus tetap 60 detik tanpa gangguan terhadap fungsi

mikrokontroler lainnya.

4.5.10 Pengujian Buzzer Menggunakan EEPROM

A. Kodingan EEPROM pada buzzer Low level trigger :

#include <EEPROM.h>

#define BUZZER_PIN 15 // pin buzzer (LOW trigger)
#define EEPROM_SIZE 512 // ukuran EEPROM (wajib di-

EEPROM.begin())

int addr = 0; // alamat EEPROM untuk simpan
durasi

unsigned long durasi; // variabel durasi buzzer (ms)

void setup() {

Serial.begin(115200);

53

pinMode (BUZZER_PIN, OUTPUT);

// Inisialisasi EEPROM
if (!EEPROM.begin(EEPROM_SIZE)) {
Serial.println("Gagal inisialisasi EEPROM!");

while (1);

// --- Membaca data lama dari EEPROM ---

EEPROM.get(addr, durasi);

// Jika masih kosong (belum pernah disimpan), set
default
if (durasi == OXFFFFFFFF || durasi == @) {
durasi = 1000; // default 1 detik (1000 ms)
EEPROM. put(addr, durasi);

EEPROM. commit();

Serial.print("Durasi dari EEPROM: ");

Serial.println(durasi);

o4

void loop() {

// Bunyi buzzer pakai durasi yang dibaca dari
EEPROM

digitalWrite(BUZZER_PIN, LOW); // aktif (karena
low trigger)

delay(durasi);

digitalWrite(BUZZER_PIN, HIGH); // mati

delay(500); // jeda setengah detik

// --- Update durasi via Serial Monitor ---
if (Serial.available()) {
String input = Serial.readStringUntil('\n");
unsigned long durasiBaru = input.toInt();
if (durasiBaru > 0) {
durasi = durasiBaru;
EEPROM. put(addr, durasi);
EEPROM. commit();
Serial.print("Durasi baru tersimpan: ");

Serial.println(durasi);

95

» Penjelasan Program
Program ini bertujuan untuk mengontrol durasi bunyi buzzer menggunakan
EEPROM, sehingga nilai durasi dapat disimpan secara permanen di dalam
memori mikrokontroler dan tetap tersedia meskipun daya dimatikan.

A. Inisialisasi Awal
Bagian awal program memanggil pustaka EEPROM dan mendefinisikan
parameter dasar:
#include <EEPROM.h> — mengaktifkan fungsi baca-tulis pada memori
EEPROM internal ESP32.
#define BUZZER_PIN 15 . menetapkan GPIO 15 sebagai pin output buzzer
bertipe low-level trigger, artinya buzzer menyala saat logika bernilai LOW.
#define EEPROM_SIZE 512 . menentukan ukuran memori EEPROM yang
akan digunakan (512 byte).
int addr = @ . menentukan alamat awal penyimpanan data durasi.
unsigned long durasi . menyimpan nilai durasi bunyi buzzer dalam
satuan milidetik.
Fungsi EEPROM. begin(EEPROM_SIZE) wajib dipanggil agar ESP32 dapat
mengakses memori EEPROM-nya.

B. Penetapan Nilai Default Durasi
Saat pertama kali program dijalankan, sistem akan mencoba membaca data
yang sebelumnya tersimpan di EEPROM menggunakan:
EEPROM.get(addr, durasi);
ketika data belum pernah disimpan (hasilnya kosong atau 0), maka nilai default
durasi = 1000 ms (1 detik) akan ditetapkan dan disimpan kembali menggunakan:
EEPROM. put(addr, durasi);
EEPROM. commit();
Perintah EEPROM.commit() sangat penting karena memastikan data benar-

benar tertulis ke memori flash ESP32.

56

C. Membaca Data dari EEPROM
Nilai durasi yang tersimpan di EEPROM akan ditampilkan melalui Serial
Monitor, dengan pesan seperti:

Durasi dari EEPROM: 1000

Dan Pada gambar berikut dibawah ini

Gambar 4.5.5.5 Output Durasi EEPROM

Pada Gambar ini menandakan bahwa sistem berhasil membaca nilai durasi dari
memori non-volatile.
D. Bagian Loop (Logika Utama)
Bagian loop () menjalankan dua fungsi utama:
1. Mengaktifkan buzzer berdasarkan durasi tersimpan.
. digitalWrite(BUZZER_PIN, LOW) — buzzer ON (karena low
trigger).
il. delay(durasi) — menunggu selama nilai durasi aktif (misal 1000
ms).
ii. digitalWrite(BUZZER_PIN, HIGH) — buzzer OFF.
iv. delay(500) — jeda 0,5 detik sebelum siklus berikutnya.
2. Memperbarui durasi melalui Serial Monitor.
Jika pengguna mengetik angka baru (misal 3000) di Serial Monitor, maka:
i. Nilai durasi akan diperbarui menjadi 3000 ms.
ii. Data baru disimpan ke EEPROM dengan EEPROM.put() dan
EEPROM. commit().
iii. Serial Monitor akan menampilkan:
Durasi baru tersimpan: 3000
Dengan demikian, setiap kali ESP32 dihidupkan ulang, durasi terakhir yang

disimpan tetap digunakan tanpa harus diatur ulang.

S7

» Alur Kerja Sistem

1. Sistem membaca nilai durasi dari EEPROM.

2. Jika belum ada data, sistem menetapkan nilai default (1 detik).

3. Buzzer menyala sesuai durasi yang tersimpan.

4. Pengguna dapat mengirim nilai baru melalui Serial Monitor untuk
memperbarui durasi.

5. Nilai baru otomatis disimpan ke EEPROM dan digunakan pada siklus
berikutnya.

> Analisis Teknis
Penggunaan EEPROM pada ESP32 memungkinkan sistem menyimpan
konfigurasi secara permanen, yang sangat penting pada aplikasi 0T atau sistem
tertanam (embedded system).
Dibandingkan metode hardcode biasa, pendekatan ini:

I. Lebih fleksibel, karena parameter dapat diubah tanpa memodifikasi program.

ii. Non-volatile, artinya data tidak hilang saat perangkat dimatikan.

iii. Efisien untuk kalibrasi perangkat dan pengaturan waktu otomatis.
Hubungan antara durasi buzzer dan periode sinyal tetap mengacu pada prinsip

dasar frekuensi dalam fisika:

\'ﬁ
I
~N| =

Zenius, (2021)
Semakin panjang nilai durasi yang disimpan, semakin rendah frekuensi bunyi

buzzer yang dihasilkan.

» Kesimpulan Pengujian
Pengujian buzzer menggunakan EEPROM menunjukkan hasil sebagai berikut:
1. Sistem berhasil membaca dan menulis data durasi ke memori non-volatile.

2. Nilai durasi tetap tersimpan walaupun perangkat di reset atau dimatikan.

58

1)

2)

3. Pengguna dapat mengubah durasi dengan mudah melalui Serial Monitor
tanpa perlu memprogram ulang mikrokontroler.

4. Fungsi EEPROM.put() dan EEPROM.commit() bekerja dengan stabil,
memastikan data tersimpan permanen.

Dengan demikian, integrasi EEPROM pada sistem buzzer ini terbukti efektif

untuk penyimpanan konfigurasi jangka panjang dalam aplikasi kontrol 10T

berbasis ESP32.

Pengujian EEPROM untuk setting Buzzer ON/OFF
Deskripsi Program
Program ini dirancang untuk mengontrol pola bunyi buzzer menggunakan
metode non-blocking timer (millis ()) dan menyimpan konfigurasi durasi ON
dan OFF ke dalam EEPROM agar pengaturan tetap tersimpan meskipun
perangkat dimatikan. Dengan demikian, pengguna dapat mengubah pola bunyi
buzzer melalui Serial Monitor dan sistem akan menyimpan pengaturan terakhir
secara otomatis ke dalam memori permanen.
Fitur utama dari program ini meliputi:
1. Pengaturan pola bunyi buzzer berdasarkan tiga mode (‘a', ‘b', dan ‘c').
2. Penggunaan EEPROM untuk menyimpan durasi ON/OFF secara permanen.
3. Penggunaan millis() sebagai sistem waktu non-blocking agar program tidak
terganggu oleh fungsi delay().

4. Komunikasi interaktif dengan pengguna melalui Serial Monitor.

Kodingan Program

59

#include <EEPROM.h>

#define BUZZER_PIN 15 // Pin buzzer (LOW trigger)
#define EEPROM SIZE 512 // Ukuran EEPROM (wajib di-
EEPROM.begin())

#define ADDR_DURASI ON © // Alamat EEPROM untuk durasi
ON

#define ADDR_DURASI OFF 4 // Alamat EEPROM untuk durasi
OFF

unsigned long durasiOn; // Durasi ON buzzer dalam ms
unsigned long durasiOff; // Durasi OFF buzzer dalam
ms

unsigned long waktuSebelumnya = ©; // Untuk menyimpan

waktu terakhir

bool isBuzzerOn = false; // Status buzzer (ON atau
OFF)

void setup() {

Serial.begin(115200);

pinMode (BUZZER_PIN, OUTPUT);

// Pastikan buzzer mati saat startup (karena low
trigger)

digitalWrite(BUZZER_PIN, HIGH);

// Inisialisasi EEPROM

if (!EEPROM.begin(EEPROM_SIZE)) {
Serial.println("Gagal inisialisasi EEPROM!");
while (1);

60

// Membaca data lama dari EEPROM

EEPROM. get (ADDR_DURASI_ON, durasiOn);

EEPROM. get (ADDR_DURASI_OFF, durasiOff);

// Jika belum ada data, set nilai default ke pola 'a‘

if (durasiOn == OxFFFFFFFF || durasiOn == @) {
durasiOn = 1000;

}

if (durasiOff == OxXFFFFFFFF || durasiOff == 0) {
durasiOff = 1000;

// Menyimpan nilai default ke EEPROM jika belum ada
EEPROM. put (ADDR_DURASI_ON, durasiOn);

EEPROM. put (ADDR_DURASI_OFF, durasiOff);

EEPROM. commit();

Serial.println("=====================================");
Serial.println("Konfigurasi Buzzer dari EEPROM:");
Serial.print("Durasi ON: ");

Serial.print(durasion);
Serial.println(" ms");
Serial.print("Durasi OFF: ");
Serial.print(durasiOff);

Serial.println(" ms");

Serial.println(":::::::::::::::::::::::::::::::::::::");
Serial.println("Masukkan a', 'b', atau 'c' untuk
mengubah pola:");

Serial.println("- 'a': ON 1000 ms, OFF 1000 ms");

61

Serial.println("- 'b': ON 2000 ms, OFF 1000 ms");
Serial.println("- 'c': ON 1000 ms, OFF 2000 ms");

SePial.pPintln("=====================================);
}

void loop() {

unsigned long waktuSekarang = millis();

// Kontrol buzzer menggunakan millis()
if (isBuzzerOn && waktuSekarang - waktuSebelumnya >=
durasion) {
digitalWrite(BUZZER_PIN, HIGH); // Buzzer OFF (LOW
trigger)
isBuzzerOn = false;
waktuSebelumnya = waktuSekarang;
} else if (!isBuzzerOn && waktuSekarang -
waktuSebelumnya >= durasiOff) {
digitalWrite(BUZZER_PIN, LOW); // Buzzer ON (LOW
trigger)
isBuzzerOn = true;

waktuSebelumnya = waktuSekarang;

// Membaca input dari Serial Monitor
if (Serial.available()) {

char input = Serial.read();

// Periksa input 'a', 'b', atau 'c

if (input == 'a' || input == 'b' || input == 'c') {

62

="

// Atur durasi ON dan OFF berdasarkan pilihan
lal) {

durasiOn = 1000;

durasiOff = 1000;

if (inpu

} else if (input == 'b'") {
durasiOn = 2000;
durasiOff = 1000;

} else if (input == 'c') {
durasiOn = 1000;
durasiOff = 2000;

// Simpan durasi baru ke EEPROM

EEPROM.
EEPROM.
EEPROM.

Serial.

Serial.
Serial.
Serial
Serial.
Serial.
Serial
Serial.
Serial.
Serial.
Serial

Serial.

put (ADDR_DURASI ON, durasiOn);
put (ADDR_DURASI OFF, durasiOff);
commit();

println("\n

")

print("Konfigurasi baru tersimpan:

print("Pola '");

.print(input);

println("'");
print("Durasi ON: ");

.print(durasion);

println(" ms");
print("Durasi OFF: ");
print(durasiOff);

.println(" ms");

println("

63

} else {
Serial.println("\nInput tidak valid. Masukkan

a,
'b', atau 'c'.");

}

3) Penjelasan Program
Kode di atas menggunakan EEPROM sebagai penyimpanan nilai durasi ON dan
OFF buzzer secara permanen, sehingga ketika sistem dimatikan dan dihidupkan
kembali, konfigurasi terakhir tetap tersimpan.
A. Bagian Deklarasi dan Setup
I. #include <EEPROM.h> digunakan untuk mengakses fungsi baca/tulis
memori EEPROM.
ii. Pin buzzer didefinisikan pada pin 15, dengan logika LOW trigger (aktif
ketika LOW).
ii. EEPROM memiliki dua alamat memori: ADDR_DURASI ON untuk
menyimpan waktu ON dan ADDR_DURASI_ OFF untuk waktu OFF.
iv. Nilai default (1000 ms) akan ditetapkan jika EEPROM belum pernah diisi
sebelumnya.
B. Bagian Loop (Logika Utama)
i. Program menggunakan fungsi millis() untuk mengukur waktu berjalan

tanpa menghentikan proses lain (non-blocking).

64

i.. Jika buzzer menyala melebihidurasi ON, maka akan dimatikan. Sebaliknya,
jika buzzer mati melebihi durasi OFF, maka akan dinyalakan.

iii. Status ON/OFF buzzer disimpan dalam variabel isBuzzerOn.

C. Input dari Serial Monitor
I. Pengguna dapat memasukkan huruf'a’, 'b', atau ‘c' untuk mengubah pola:
1. 'a: ON 1000 ms, OFF 1000 ms
2. 'b': ON 2000 ms, OFF 1000 ms
3. 'c ON 1000 ms, OFF 2000 ms
ii. Setiap kali pola diubah, nilai baru disimpan ke EEPROM agar tetap
tersimpan meski perangkat dimatikan.
4) Hasil dan Tampilan Output

Berikut tampilan hasil output pada Serial Monitor saat program dijalankan:

[T N R)
~
]
|
=

Gambar 4.5.5.5 Output Konfigurasi Buzzer Dari EEPROM
Jika ingin memasukkan “a','b'",'c' untuk mengubah pola maka bisa dilihat pada

gambar di bawabh ini:

s, OFF 100

Gambar 4.5.5.5 Output masukkan ‘a','b','c' untuk mengubah pola
Saat pengguna mengetik huruf a','b','c’ ‘pada Serial Monitor, maka output

berubah menjadi:

I
s
|
I
L
(
=

Gambar 4.5.5.5 Output Konfigurasi baru tersimpan pada Pola ‘a'

65

Gambar 4.5.5.5 Output Konfigurasi baru tersimpan pada Pola ‘c'

Buzzer kemudian berbunyi mengikuti pola tersebut, dan konfigurasi tersimpan
otomatis di EEPROM.

5) Kesimpulan
Dari implementasi program ini dapat disimpulkan bahwa:

a. EEPROM berfungsi dengan baik sebagai penyimpan data permanen pada
ESP32.

b. Penggunaanmillis() berhasil membuat sistem bekerja tanpa delay blocking.

c. Pengguna dapat dengan mudah mengubah pola kerja buzzer melalui Serial
Monitor, dan sistem menyimpannya secara otomatis.

d. Program ini efisien, responsif, dan cocok diterapkan untuk aplikasi peringatan

suara otomatis atau sistem notifikasi berbasis 10T.

66

4.5.11 Pengujian Buzzer Menggunakan Koneksi WIFI

A. Tujuan Pengujian

Tujuan dari pengujian ini adalah untuk memastikan bahwa buzzer dapat
berfungsi secara non-blocking (tanpa delay) saat memantau koneksi WiFi pada
modul ESP32. Dengan cara ini, buzzer tetap dapat berfungsi selama proses
pengecekan atau penyambungan ulang WiFi.

B. Alat dan Bahan

1. ESP32 DevKit V1

2. Buzzer aktif (Low Trigger)

3. Kabel jumper

4. Jaringan WiFi HOSTPOT melalui HP saya dengan SSID "Alan™ dan password
"alan12378"

5. Software Arduino IDE

C. Langkah Pengujian

1. Hubungkan pin buzzer ke GP1O 15 ESP32.

2. Upload program berikut ke ESP32:

#include <WiFi.h>

#define BUZZER_PIN 15 // pin buzzer (low
trigger)

const char* ssid = "Alan";

const char* password = "alanl12378";

unsigned long buzzerOn = 1000;
unsigned long buzzerOff = 1000;
unsigned long prevBuzzerMillis = 0;

bool buzzerState = false;

unsigned long prevWiFiMillis = ©;

67

unsigned long intervalWiFi = 5000;

void setup() {
Serial.begin(115200);
pinMode (BUZZER_PIN, OUTPUT);
digitalWrite(BUZZER_PIN, HIGH); // buzzer OFF (low
trigger)
}

void loop() {

unsigned long currentMillis = millis();

// ====== BUZZER Non-blocking ======
if (!'buzzerState && currentMillis -
prevBuzzerMillis >= buzzerOff) {
buzzerState = true;
prevBuzzerMillis = currentMillis;
digitalWrite(BUZZER_PIN, LOW); // buzzer ON
}
else if (buzzerState && currentMillis -
prevBuzzerMillis >= buzzerOn) {
buzzerState = false;
prevBuzzerMillis = currentMillis;

digitalWrite(BUZZER_PIN, HIGH); // buzzer OFF

// ====== WiFi Reconnect Non-blocking ======

if (currentMillis - prevWiFiMillis >= intervalWiFi)

previWiFiMillis = currentMillis;

if (WiFi.status() != WL_CONNECTED) {

68

Serial.println("WiFi terputus, mencoba
koneksi...");
WiFi.disconnect();
WiFi.begin(ssid, password);
}

else {

Serial.println("WiFi masih terhubung A");
}

3. Buka Serial Monitor untuk memantau status koneksi WiFi.
4. Amati bunyi buzzer yang menyala dan mati secara bergantian setiap 1 detik.

5. Putuskan koneksi WiFi untuk menguji fungsi reconnect otomatis.

Hasil outputnya Bisa dilihat di bawah ini:

I
[} o
|
)
A1}
ol
[—
}
1
I
I+
w0
y M |
S
o
o I
b
I
~
I

12:05:04.89 d 74
12:05:04,898 ->» load:0x 4 ,len: 15672
12:05:04.898 -> load:0x40080400,len:3152
12:05:04.898 -> entry 0x4008059c¢

12:05:10.160 -> WiFi terputus, mencoba koneksi
12:05:15.188 -> WiFi masih terhubung

Gambar 4.5.5.6 Hasil output Koneksi WIFI
5. Kesimpulan
Berdasarkan hasil pengujian, sistem buzzer bekerja secara independen dari
koneksi WiFi. Fungsi non-blocking menggunakan millis () terbukti efektif,
karena ESP32 dapat melakukan dua proses paralel:
i. Mengontrol buzzer menyala dan mati secara teratur.
i. Memeriksa serta menyambungkan ulang WiFi setiap 5 detik.
Dengan demikian, sistem ini stabil dan efisien untuk digunakan dalam proyek 10T
berbasis WiFi.

69

4.5.12 Pengujian Buzzer Menggunakan Koneksi MQTT

A. Tujuan Pengujian
Tujuan dari pengujian ini adalah untuk memastikan bahwa sistem dapat
melakukan pengendalian buzzer secara non-blocking dan menjaga koneksi WiFi
dan MQTT secara otomatis. Selain itu, pengujian ini memastikan bahwa broker
publik HiveMQ memiliki kemampuan untuk mengendalikan buzzer dari jarak jauh
melalui protokol MQTT.
B. Alat dan Bahan
. ESP32 DevKit V1
ii. Buzzer aktif (low trigger)
iii. kabel jumper (female to female)
iv. Koneksi internet WiFi di rumah saya (SSID: samudra43, Password:
TNIAL.25.)
v. Software Arduino IDE
vi. MQTT Dashboard (1oT MQTT Panel di Android)
A. Langkah Pengujian
I. Hubungkan buzzer aktif ke pin GPIO 15 pada ESP32.
ii. Upload program berikut ke board ESP32:

#include <WiFi.h>
#include <PubSubClient.h>

// --- Konfigurasi WiFi ---
const char* ssid = "samudra43";
const char* password = "TNIAL.25.";

// --- Konfigurasi MQTT (HiveMQ Public Broker) ---
const char* mqtt_server = "broker.hivemq.com";
const int mqtt_port = 1883;
const char* topic_sub = "esp32/buzzer"; // Topic subscribe
const char* topic_pub = "esp32/status"; // Topic publish

#define BUZZER_PIN 15 // Pin buzzer (low trigger)

WiFiClient espClient;
PubSubClient client(espClient);

// --- Variabel kontrol buzzer ---
bool buzzerActive = false;

70

unsigned long previousMillis = 0;

const unsigned long buzzerOnTime = 500; // ©.5 detik ON
const unsigned long buzzerOffTime = 9500; // 9.5 detik OFF
bool buzzerState = false; // LOW = aktif, HIGH = mati

// --- Variabel pengecekan koneksi ---
unsigned long lastCheckMillis = ©;
const unsigned long checkInterval = 30000; // 30 detik

/] =mmmmmmmmmmm e MQTT CALLBACK --------=--------
void callback(char* topic, byte* message, unsigned int length) {

String msg;

for (int i = 0; i < length; i++) {

msg += (char)message[i];

}

Serial.print("Pesan diterima [");

Serial.print(topic);

Serial.print("] ");

Serial.println(msg);

if (msg == "ON") {
buzzerActive = true;
buzzerState = false; // mulai dari buzzer mati
previousMillis = millis();
client.publish(topic_pub, "Buzzer ON");
} else if (msg == "OFF") {
buzzerActive = false;
digitalWrite(BUZZER_PIN, HIGH); // pastikan buzzer mati
client.publish(topic_pub, "Buzzer OFF");

[/ - - WIFI CONNECT ----------------
void connectWiFi() {
if (WiFi.status() != WL_CONNECTED) {
Serial.print("Menghubungkan ke WiFi ");
Serial.println(ssid);
WiFi.begin(ssid, password);
}
}

[/ - - MQTT RECONNECT ----------------
void connectMQTT() {
if (!client.connected() && WiFi.status() == WL_CONNECTED) {
Serial.print("Menghubungkan ke MQTT...");
if (client.connect("ESP32_BuzzerClient")) {
Serial.println("connected");

71

client.subscribe(topic_sub);

client.publish(topic_pub, "ESP32 Connected");
} else {

Serial.print("Gagal, rc=");

Serial.println(client.state());

/] ==e=memmmmemeaaas SETUP ======cmcemcna--
void setup() {
pinMode (BUZZER_PIN, OUTPUT);
digitalWrite(BUZZER_PIN, HIGH); // buzzer off (low trigger)

Serial.begin(115200);
client.setServer(mqtt_server, mqtt port);
client.setCallback(callback);

[=====mmmmmmeeeeo LOOP -------c-eeeanm-
void loop() {
unsigned long currentMillis = millis();

// --- Cek koneksi WiFi & MQTT tiap 30 detik ---
if (currentMillis - lastCheckMillis >= checkInterval) {
lastCheckMillis = currentMillis;
connectWiFi();
connectMQTT();

}

// --- Jalankan MQTT hanya jika sudah connect ---
if (client.connected()) {
client.loop();

}
// --- Logika buzzer ---
if (buzzerActive) {

if (!buzzerState && (currentMillis - previousMillis »>=
buzzerOffTime)) {
digitalWrite(BUZZER_PIN, LOW);
buzzerState = true;
previousMillis = currentMillis;
Serial.println("Buzzer ON");

if (client.connected()) {
client.publish(topic_pub, "Buzzer ON");

}

72

}

}

else if (buzzerState && (currentMillis - previousMillis >=
buzzerOnTime)) {

digitalWrite(BUZZER_PIN, HIGH);
buzzerState = false;
previousMillis = currentMillis;
Serial.println("Buzzer OFF");

if (client.connected()) {
client.publish(topic_pub, "Buzzer OFF");

}
}
}

iv.

o B W DR

b)

Setelah program berhasil diunggah, buka Serial Monitor pada baud rate 115200.
Tunggu hingga muncul pesan di Arduino IDE :

Menghubungkan ke WiFi samudra43

Menghubungkan ke MQTT... connected

ESP32 Connected

yang menandakan ESP32 berhasil terhubung ke jaringan WiFi dan broker

MQTT.

Buka aplikasi loT MQTT Panel di Android, kemudian tambahkan dashboard
baru dengan pengaturan berikut:

Broker : broker.hivemg.com

Port : 1883

Subscribe Topic : esp32/status

Publish Topic : esp32/buzzer

Widget :

Toggle Button untuk mengirim perintah ON/OFF ke topic publish
(esp32/buzzer).

Text Log untuk menampilkan pesan yang diterima dari broker, khususnya dari

topic yang kamu subscribe (esp32/status).

73

file:///C:/Users/Allan/Downloads/broker.hivemq.com

D. Hasil Pengujian
1) Tampilan hasil di Serial Monitor:

Output Serial Monitor X

~
(%

} I
s
w
=k

=
]
=
(9]
o
. B
s O
S =]
=
Q
~
u
fon

NN

w W W W w

N NN

Gambar 4.5.5.7 Output Koneksi MQTT di Arduino IDE

2) Tampilan hasil di aplikasi loT MQTT Panel:

A. Saat Posisi Buzzer ON

(s UU

Buzzer on/off Lo |
Buzzer OFF

Buzzer ON
Buzzer ON
Buzzer OFF
Buzzer OFF
Buzzer ON
Buzzer ON
Buzzer OFF

ESP32 Connected

060

Gambar 4.5.5.7 Output Koneksi MQTT di aplikasi loT MQTT Panel Saat Posisi
Buzzer ON

74

B. Saat Posisi Buzzer OFF

= KP251 - u

J® Button

Buzzer on/off Lo
Buzzer OFF

Buzzer OFF
Buzzer ON
Buzzer ON
Buzzer OFF

ESP32 Connec ted

000

Gambar 4.5.5.7 Output Koneksi MQTT di aplikasi loT MQTT Panel Saat Posisi
Buzzer OFF

E. Kesimpulan
Berdasarkan hasil pengujian sistem kendali buzzer berbasis ESP32 dan MQTT,
dapat disimpulkan bahwa:

1. Sistem berhasil terhubung secara stabil ke jaringan WiFi dan broker MQTT

(broker.hivemg.com) menggunakan port 1883, serta mampu menjaga

koneksi secara otomatis saat terjadi pemutusan.

2. Komunikasi antara ESP32 dan aplikasi loT MQTT Panel berjalan dengan

baik melalui topik:
A. Publish Topic: esp32/buzzer untuk mengirim perintah dari pengguna.
B. Subscribe Topic: esp32/status untuk menerima umpan balik kondisi buzzer.

3. Fitur non-blocking buzzer control berfungsi dengan benar — buzzer dapat
menyala dan mati berkala tanpa mengganggu proses koneksi WiFi maupun
MQTT.

4. Dari hasil uji di Serial Monitor dan IoT MQTT Panel, terlihat bahwa setiap
perintah ON/OFF yang dikirim dari dashboard diterima dan dieksekusi

sesuai dengan respon yang ditampilkan.

75

file:///C:/Users/Allan/Downloads/broker.hivemq.com

5. Dengan demikian, sistem ini telah berhasil menjalankan fungsi
pengendalian buzzer jarak jauh secara real-time menggunakan protokol
MQTT, dan siap dikembangkan untuk kontrol perangkat IoT lainnya.

4.6 Perancangan Rangkaian

4.6.1 Skenario Pengujian Rangkaian

Pengujian dilakukan untuk memastikan bahwa sistem pemberian pakan otomatis
dan notifikasi 10T bekerja dengan benar. Skenario pengujian adalah sebagai

berikut;

A. Server MQTT mensimulasikan jadwal pemberian pakan

B. Broker MQTT mengirimkan pesan ke mikrokontroler ESP32 ketika waktu
jadwal tercapai.

C. ESP32 kemudian memicu buzzer agar berbunyi sebagai bentuk notifikasi.

D. Buzzer berfungsi sebagai alarm simulasi, sehingga dosen maupun mahasiswa
dapat mengetahui waktu pemberian pakan tanpa perlu memantau akuarium fisik
secara langsung.

4.6.2 Implementasi Simulasi di Ruang Dosen

Beberapa komponen utama rangkaian sistem digunakan sebagai proyek
demonstrasi, seperti:

1. ESP32 DevKit V1

2. Buzzer dengan tipe trigger low-level

3. Koneksi WiFidan broker MQTT sebagai media komunikasi data

Pada tahap ini, akuarium fisik tidak digunakan. Sebaliknya, simulasi penuh

dilakukan melalui sistem 10T, dengan detail berikut:

1. Jadwal pemberian pakan disimulasikan melalui server MQTT

2. Status buzzer dapat dipantau melalui aplikasi smartphone atau MQTT
Dashboard, seperti HiveMQ Dashboard.

3. Dashboard tersebut memungkinkan dosen dan mahasiswa melihat status
sistem secara real-time, yang menunjukkan bahwa logika kontrol dan

komunikasi antarperangkat berjalan dengan baik.

76

4.7 Pengujian Rangkaian Project Akhir
4.7.1 Deskripsi Umum Pengujian

Pengujian rangkaian dilakukan untuk memastikan bahwa perangkat keras dan
perangkat lunak yang telah dibuat sesuai dengan sistem pemberian pakan otomatis
berbasis 10T. Dua jenis perangkat utama digunakan dalam project akhir, yaitu:
Perangkat Keras (Hardware):
Modul mikrokontroler ESP32 DevKit V1
Buzzer tipe low-level trigger
Kabel jumper male to male dan female to female

Kabel charger mikrokontroler

mooOow>»*r

Adaptor sebagai sumber daya
Seluruh perangkat dirangkai menjadi satu kesatuan sistem seperti pada gambar

rancangan rangkaian.

Gambar 4.7.1 Rangkaian Project Akhir Perangkat Keras (Hardware)

2. Perangkat Lunak (Software)

Dengan menggunakan Arduino IDE di laptop, dapat menulis kode dan
mengirimkannya ke mikrokontroler ESP32. Kemudian Smartphone menggunakan
aplikasi 10T MQTT Panel untuk melacak status sistem dan mengendalikannya

secara real-time.

4.7.2 Skenario Pengujian

Pengujian dilakukan untuk mengamati respon sistem terhadap pesan MQTT yang
dikirim dari server dan memastikan bahwa proses notifikasi bekerja dengan baik.
Tahapan skenario pengujian adalah sebagai berikut:

A. Jadwal pemberian pakan disimulasikan melalui server MQTT.

77

Ketika waktu jadwal tercapai, broker MQTT mengirimkan pesan ke ESP32.
ESP32 memicu buzzer untuk berbunyi sebagai tanda notifikasi waktu
pemberian pakan.

Buzzer berfungsi sebagai alarm simulasi, yang membantu dosen dan mahasiswa

mengetahui waktu pemberian pakan tanpa harus memantau akuarium fisik.

4.7.3 Implementasi Pengujian

Rangkaian sistem diuji di ruang dosen dengan konfigurasi sebagai berikut:
ESP32 terhubung ke jaringan WiFi UNDIKANet dengan kredensial yang telah
diatur.

Broker MQTT yang digunakan adalah mqtt.dinamika.ac.id dengan port 1883.
Topik komunikasi yang digunakan mencakup:

mhs/jadwal — menerima perubahan jadwal dari server

mhs /waktu — mengirim status waktu mundur ke dashboard

mhs/status — mengirim status sistem (Aktif, Idle, atau Jadwal Diubah)

Pengujian dilakukan tanpa menggunakan akuarium fisik, melainkan hanya
melalui simulasi logika dan kontrol dengan memanfaatkan buzzer sebagai
indikator notifikasi serta status sistem yang muncul pada MQTT Dashboard.
Dosen dan mahasiswa dapat memantau kondisi sistem secara real-time melalui
dashboard, membuktikan bahwa komunikasi dua arah antara server MQTT dan
ESP32 berjalan dengan baik.

4.7.4 Kodingan ARDUINO IDE

#include <PubSubClient.h>
##include <EEPROM.h>

/] === Konfigurasi EEPROM ----------------
#define EEPROM_SIZE 16
#define ADDR_BANYAK %)
#define ADDR_LAMAMS 4

#define ADDR_BANYAK_DEF 8
#define ADDR_LAMAMS DEF 12

78

/] —mmmmmmmmmm e Pin Buzzer -------------------
#define BUZZER_PIN 15 // sesuaikan pin buzzer

/] === Konfigurasi WiFi ------------------

const char* WIFI_SSID
const char* WIFI_PASSWORD

"UNDIKANet";
"SemangatPagi:)";

[/ === eee o Konfigurasi MQTT ------------------

const char* MQTT_SERVER

"mgtt.dinamika.ac.id";

const int MQTT_PORT = 1883;

const char* MQTT_USER = "mhs";

const char* MQTT_PASS = "mahasiswa";

/] == MQTT Topics -------------------
String baseTopic = String(MQTT_USER) + "/";

String topicSub baseTopic + "jadwal";
String topicWaktu baseTopic + "waktu";
String topicStatus = baseTopic + "status";

WiFiClient espClient;
PubSubClient client(espClient);

TEE | kE R W Variabel Jadwal -------------------
int Banyak;

int LamaMS;

unsigned long JadwalJamMS;

unsigned long prevMillis = 0O;

unsigned long countdownMS = O;

/] == Variabel Buzzer -------------------
bool buzzerAktif = false;
unsigned long buzzerStart = 0;

bool wifiTerhubung = false;
unsigned long prevWiFiPrint = ©;

/] —mmmmmmmmmmmmmmmme Fungsi EEPROM --------=-----------
void saveEEPROM(int addr, int value) {

EEPROM. put(addr, value);

EEPROM. commit();

}

int readEEPROM(int addr) {

79

int val;
EEPROM.get(addr, val);
return val;

}

void loadJadwal() {

Banyak = readEEPROM(ADDR_BANYAK);

LamaMS = readEEPROM(ADDR_LAMAMS);

if (Banyak <= @) Banyak = 1;

JadwalJamMS = (unsigned long)(24.0 * 3600 * 1000 /
Banyak);

countdownMS = JadwalJlamMS;

/] - mmmmm e MQTT Callback -------------------

void callback(char* topic, byte* payload, unsigned int
length) {

String msg;

for (unsigned int i = @; i < length; i++) msg +=
(char)payload[i];

msg.trim();

if (msg.startsWith("UBAH:")) {
int comma = msg.indexOf(',");
if (comma > @) {
Banyak = msg.substring(5, comma).toInt();
LamaMS = msg.substring(comma + 1).toInt();
saveEEPROM(ADDR_BANYAK, Banyak);
saveEEPROM(ADDR_LAMAMS, LamaMS);
loadJadwal();
if(client.connected())
client.publish(topicStatus.c_str(), "Jadwal Diubah");
}
} else if (msg.equalsIgnoreCase("RESET")) {
Banyak = readEEPROM(ADDR_BANYAK_DEF);
LamaMS = readEEPROM(ADDR_LAMAMS DEF);
saveEEPROM(ADDR_BANYAK, Banyak);
saveEEPROM(ADDR_LAMAMS, LamaMS);
loadJadwal();
if(client.connected())
client.publish(topicStatus.c_str(), "Jadwal Reset");

void reconnectWiFi() {

80

if (WiFi.status() != WL_CONNECTED) {
WiFi.begin(WIFI_SSID, WIFI_PASSWORD);

}

}

void reconnectMQTT() {
if (!client.connected() && wifiTerhubung) {
String clientId = "ESP32Client_" +
String(WiFi.macAddress());
if (client.connect(clientId.c_str(), MQTT_USER,
MQTT_PASS)) {
Serial.println("MQTT Reconnected!");
client.subscribe(topicSub.c_str());
} else {
Serial.print("MQTT Gagal, rc=");
Serial.println(client.state());

/] —==--mmmmmmmmmm-- - Setup -------------------

void setup() {

Serial.begin(115200);

pinMode (BUZZER_PIN, OUTPUT);

digitalWrite(BUZZER_PIN, HIGH); // default buzzer OFF

EEPROM. begin(EEPROM_SIZE);

if (readEEPROM(ADDR_BANYAK_DEF) == 0) {
saveEEPROM(ADDR_BANYAK_DEF, 2);
saveEEPROM(ADDR_LAMAMS_DEF, 500);
saveEEPROM(ADDR_BANYAK, 2);
saveEEPROM(ADDR_LAMAMS, 500);

}

loadJadwal();

// Mulai koneksi WiFi (non-blocking)
WiFi.begin(WIFI_SSID, WIFI_PASSWORD);
Serial.println("Menghubungkan ke WiFi...");

/] —mmmmmmmmmmmmmmmme Loop -----===---==-------
void loop() {

static unsigned long lastWiFiCheck = ©;
static unsigned long lastMQTTCheck = O;
unsigned long now = millis();

81

if (!wifiTerhubung) {
if (WiFi.status() == WL_CONNECTED) {
wifiTerhubung = true;
Serial.println("\nWiFi Terhubung!");
Serial.print("IP Address: ");
Serial.println(WiFi.localIP());

// Setup MQTT setelah WiFi connect
client.setServer(MQTT_SERVER, MQTT_PORT);
client.setCallback(callback);

} else if (now - prevWiFiPrint >= 500) {
Serial.print(".");
previWiFiPrint = now;

if (now - lastWiFiCheck > 30000) {
lastWiFiCheck = now;
reconnectWiFi();

}

if (now - lastMQTTCheck > 10000) {
1astMQTTCheck = now;
reconnectMQTT();

}

[/ === MQTT Loop -------------------
if(client.connected()) client.loop();

[/ =---mmmmmm e Hitung mundur & logika buzzer ----

if (now - prevMillis >= 1000) {
prevMillis = now;
if (countdownMS >= 1000) countdownMS -= 1000;
else countdownMS = ©;

int jam = (countdownMS / 3600000);
int menit = (countdownMS % 3600000) / 60000;
int detik = (countdownMS % 60000) / 1000;

char buffer[32];
sprintf(buffer, "%02d:%02d:%02d", jam, menit, detik);

82

if(client.connected()) {
client.publish(topicWaktu.c_str(), buffer);
} else {
Serial.println("MQTT belum connect, publish waktu
dilewati");

}
}

if (countdownMS == 0@ && !buzzerAktif) {
buzzerAktif = true;
buzzerStart = now;
digitalWrite(BUZZER_PIN, LOW);
if(client.connected())
client.publish(topicStatus.c_str(), "Buzzer Aktif");
else Serial.println("MQTT belum connect, publish Buzzer
Aktif dilewati");

}

if (buzzerAktif && (now - buzzerStart >= (unsigned
long)LamaMS)) {
digitalWrite(BUZZER_PIN, HIGH);
buzzerAktif = false;
countdownMS = JadwalJamMS;
if(client.connected())
client.publish(topicStatus.c_str(), "Idle");
else Serial.println("MQTT belum connect, publish Idle
dilewati");

¥
}

4.7.5 Output dan Pembahasan

a. Hasil Pengujian Koneksi WiFi dan MQTT

Hasil pengujian awal pada Serial Monitor menunjukkan bahwa sistem
berhasil melakukan koneksi ke jaringan WiFi dan memperoleh alamat [P
(172.16.42.202). Namun, sebelum koneksi MQTT stabil, sistem sempat

menampilkan pesan:

83

Setelah beberapa kali percobaan, sistem berhasil melakukan reconnect MQTT

seperti terlihat pada log:

-

LD
|

MOTT belum connect, publisl
> MQTT Reconnected!

-Lx:l_.-

(W]
()
(]

|

I

|

(A

Lad

[
[~J

I
[~
|
W

Gambar 4.7.5 Output MQTT reconnect di ARDUINO IDE

Hal ini membuktikan bahwa mekanisme reconnect otomatis pada kode program
bekerja dengan baik ketika koneksi ke broker MQTT sempat terputus.
b. Hasil Pengujian melalui Aplikasi loT MQTT Panel
Setelah koneksi berhasil, sistem diuji menggunakan aplikasi loT MQTT Panel.
Terdapat tiga topik komunikasi utama yang digunakan:
1. mhs/jadwal — menerima perintah dari pengguna (UBAH / RESET).
2. mhs/status — menampilkan status buzzer (“Idle”, “Buzzer Aktif”, “Jadwal
Diubah”, “Jadwal Reset”).
3. mhs/waktu — menampilkan waktu hitung mundur (countdown) menuju
jadwal bunyi berikutnya.
Tampilan pada panel menunjukkan perubahan status secara real-time sesuai logika
program:

a) Saat countdown berjalan, status menampilkan “ldle”.

84

= KP 251 [o

Hitung Mundur: mhs/waktu
00:00:01

Status Buzzer: mhs/status
Idle

nnnnnnnnn 1 §
UBAH:2150,500
=

0600

Gambar 4.7.5 Saat Posisi Buzzer Idle

b) Saat waktu habis (00:00:00), status berubah menjadi “Buzzer Aktif” selama 0,5
detik.

8 = .l 85%m

e @

Hitung Mundur: mhs/waktu
00:00:00

Status Buzzer: mhs/status
Buzzer Aktif

Ubah Jadwal H
UBAH:2150,500

000

Gambar 4.7.5 Status Buzzer Aktif

c) Setelah buzzer selesai aktif, sistem kembali ke “Idle” dan memulai perhitungan

ulang.
d) Jika perintah RESET dikirim, status berubah menjadi “Jadwal Reset” dan

countdown diatur ulang.

85

= KP251 [o

Hitung Mundur: mhs/waktu
11:59:51

Status Buzzer: mhs/status
Jadwal Reset

Ubah Jadwal H
UBAH:10000,500
i

060

Gambar 4.7.5 Jadwal Reset
e) Jika perintah UBAH dikirim, status menjadi “Jadwal Diubah” dan nilai jadwal

baru tersimpan di EEPROM.
= KP 251 a e

Hitung Mundur: mhs/waktu

23:59:56

Status Buzzer: mhs/status
Jadwal Diubah

Ubah Jadwal :

UBAH:1,500

RESET JADWAL g
©

Gambar 4.7.5 Ubah Jadwal

c. Analisis Perhitungan Jadwal dan Interval
Rumus dasar perhitungan interval antar bunyi buzzer mengacu pada konsep

pembagian waktu dalam satu hari terhadap jumlah kejadian yang diinginkan. Secara

matematis dapat dinyatakan sebagai berikut:

86

JadwalJamMS = 24 x 3600 x 1000
Banyak

Dengan keterangan:

e Banyak = jumlah bunyi buzzer dalam satu hari
e LamaMS = durasi buzzer aktif dalam milidetik (ms)
e 1 hari=86.400.000 ms
Konsep periode dan frekuensi pada gelombang mirip (Zenius, 2021). Pada
gelombang, periode adalah kebalikan dari frekuensi, yaitu waktu yang dibutuhkan
untuk satu siklus kejadian. Dalam hal ini, setiap "siklus" adalah satu kali buzzer
menyala setiap hari. Oleh karena itu, semakin besar jumlah "siklus", semakin
pendek waktu yang dihabiskan untuk menunggu bunyi buzzer.
Sebagai Contoh :
Jika perintah yang dikirim melalui aplikasi adalah:

UBAH: 2150, 500

maka:
86.400.000

5150 = 40.186 ms =~ 40 detik

Artinya, buzzer akan aktif setiap 40 detik selama 0,5 detik, kemudian kembali ke

kondisi Idle hingga interval berikutnya tercapai.

d. Tabel Hasil Uji Jadwal dan Status Buzzer

Tabel berikut menyajikan hasil uji coba perubahan jadwal, perhitungan waktu
mundur (countdown), status buzzer, serta keterangan sistem dengan durasi bunyi
buzzer sebesar 500 ms (0,5 detik). Perhitungan dilakukan berdasarkan rumus
interval antar bunyi, proses countdown, konversi waktu ke format
jam:menit:detik, reset waktu mundur, serta total durasi buzzer aktif (ON)

selama pengujian.

87

Tabel 4.7.5 Hasil Uji Jadwal dan Status Buzzer

NO Ubah Interval Hitung Status Penjelasan
Jadwal Mundur Buzzer
(Banyak, di
LamaMS) MQTT
1 (50, 500) 28 00:28:48 Buzzer Karena 24
menit — Aktif jam dibagi 50
48 detik 00:00:00 = 1728 detik
(28 menit 48
detik). Jadi
setiap 28:48
buzzer ON
selama 0,5
detik.
2 (100, 500) 14 00:14:24 Buzzer 24 jam + 100
menit — Aktif = 864 detik
24 detik 00:00:00 (14:24). Jadi
buzzer nyala
tiap 14 menit
sekali.
3 (150, 500) 9 menit 00:09:36 Buzzer 24 jam + 150
36 detik — Aktif = 576 detik
00:00:00 (9:36).
Semakin
rapat.
4 (200, 500) 7 menit 00:07:12 Buzzer 24 jam + 200
12 detik — Aktif = 432 detik
00:00:00 (7:12).
5 (250, 500) 5 menit 00:05:45 Buzzer 24 jam + 250
45 detik — Aktif = 345,6 detik
00:00:00 ~ 5:45,
6 (300, 500) 4 menit 00:04:48 Buzzer 24 jam + 300
48 detik — Aktif = 288 detik
00:00:00 (4:48).
7 (350, 500) 4 menit 00:04:08 Buzzer 24 jam + 350
08 detik — Aktif = 246,9 detik
00:00:00 ~ 4:08.
8 (400, 500) 3 menit 00:03:36 Buzzer 24 jam + 400
36 detik — Aktif = 216 detik
00:00:00 (3:36).

88

9 (450, 500) 3 menit 00:03:12 Buzzer 24 jam + 450
12 detik — Aktif =192 detik
00:00:00 (3:12).
10 (500, 500) 2 menit 00:02:52 Buzzer 24 jam + 500
52 detik — Aktif =172,8 detik
00:00:00 ~ 2:52.
11 (12000, 1 menit 00:01:26 Buzzer Semakin
500) 26 detik — Aktif sering, tiap
00:00:00 86,4 detik
buzzer ON.
12 (2500, 57 detik 00:00:57 Buzzer Nyala tiap 57
500) — Aktif detik.
00:00:00
13 (2000, 43 detik 00:00:43 Buzzer Nyalatiap 43
500) — Aktif detik.
00:00:00
14 (2500, 34 detik 00:00:34 Buzzer Nyalatiap 34
500) — Aktif detik.
00:00:00
15 (3000, 28 detik 00:00:28 Buzzer Nyala tiap 28
500) — Aktif detik.
00:00:00
16 (3500, 24 detik 00:00:24 Buzzer Nyala tiap 24
500) — Aktif detik.
00:00:00
17 (4000, 21 detik 00:00:21 Buzzer Nyala tiap 21
500) - Aktif detik.
00:00:00
18 (4500, 19 detik 00:00:19 Buzzer Nyala tiap 19
500) — Aktif detik.
00:00:00
19 (5000, 17 detik 00:00:17 Buzzer Nyalatiap 17
500) — Aktif detik.
00:00:00
20 (5500, 16 detik 00:00:16 Buzzer Nyalatiap 16
500) — Aktif detik.
00:00:00

89

Analisis:

Jumlah banyak bunyi buzzer yang dibuat setiap hari, atau jumlah bunyi buzzer,
terkait dengan waktu antara bunyi semakin pendek, seperti yang ditunjukkan dalam
tabel di atas. Hal ini menunjukkan bahwa, berdasarkan perhitungan matematis
rumus interval, sistem logika program berhasil menyesuaikan waktu antara bunyi.
Selain itu, fungsimillis () dan mekanisme EEPROM bekerja dengan benar, dan
dashboard MQTT menampilkan hasil hitung mundur yang konsisten. Saat waktu
mundur mencapai 00:00:00, status "Buzzer Aktif" muncul.

90

BAB V

PENUTUP

5.1. Kesimpulan

Berdasarkan hasil perancangan, implementasi, dan pengujian sistem Monitoring

dan Notifikasi Jadwal Pemberian Pakan Ikan Akuarium berbasis ESP32 dan Buzzer

dengan komunikasi MQTT, maka dapat diambil beberapa kesimpulan sebagai
berikut:

1.

Sistem Monitoring dan Notifikasi Jadwal Pemberian Pakan Ikan Akuarium
berbasis ESP32 dan Buzzer dengan komunikasi MQTT berhasil dirancang dan
diimplementasikan di Ruang Dosen S1 Teknik Komputer Universitas
Dinamika.

ESP32 berfungsi sebagai mikrokontroler utama yang mengatur pengiriman dan
penerimaan data melalui protokol MQTT. Ini memungkinkan platform
pemantauan untuk menerima notifikasi jadwal pakan secara real-time.

Buzzer bekerja sebagai indikator bunyi otomatis yang memberikan peringatan
sesuai jadwal pemberian pakan yang telah ditentukan, berdasarkan hasil
perhitungan interval waktu dan countdown yang telah diatur pada sistem.
Dengan menggunakan rumus konversi waktu harian (dalam milidetik), sistem
dapat menghitung jadwal dan interval bunyi dengan akurat. Selain itu, sistem
dapat menampilkan status buzzer aktif dan sisa waktu hitung mundur secara
sinkron dengan data MQTT.

Hasil uji coba menunjukkan bahwa sistem dapat memberikan notifikasi tepat
waktu dengan buzzer aktif selama 500 milidetik, yang menunjukkan bahwa
desain sistem telah berjalan sesuai fungsi dan mendukung otomatisasi proses

pemeliharaan ikan hias di akuarium kampus.

91

5.2. Saran

Berdasarkan hasil perancangan dan implementasi sistem Monitoring Notifikasi

Jadwal Pemberian Pakan lkan Akuarium Menggunakan ESP32 dan Buzzer

Berbasis MQTT di Ruang Dosen S1 Teknik Komputer Universitas Dinamika,

beberapa saran yang dapat diberikan untuk pengembangan selanjutnya adalah

sebagai berikut:

1.

Penambahan sensor otomatis seperti feeding sensor atau ultrasonic sensor dapat
diterapkan agar sistem tidak hanya memberikan notifikasi, tetapi juga mampu
mendeteksi kondisi pakan dan air secara real-time.

Mengintegrasikan dengan aktuator pemberi pakan otomatis, yang
memungkinkan sistem untuk memberikan pakan secara otomatis sesuai jadwal
yang telah ditentukan tanpa perlu melakukan perubahan manual.

Membangun antarmuka pengguna (UI/UX) untuk platform MQTT atau
dashboard berbasis web atau mobile untuk membuat tampilan monitoring lebih
interaktif dan menarik.

Meningkatkan kemampuan penyimpanan data, juga dikenal sebagai data
logging, dengan menggunakan database atau layanan cloud untuk menyimpan
sejarah jadwal pakan dan aktivitas buzzer untuk analisis jangka panjang.
Optimalkan konsumsi daya dan kestabilan koneksi Wi-Fi pada ESP32 untuk
membuat sistem lebih efisien dan handal, terutama jika digunakan dalam jangka
waktu yang lama.

Lakukan uji coba di berbagai kondisi jaringan dan suhu untuk mengetahui

Kinerja sistem di laboratorium atau di luar ruangan.

92

DAFTAR PUSTAKA
Arduino. (2023). EEPROM Library Documentation. Diakses dari:

https://www.arduino.cc/en/Reference/EEPROM
AsyncMqttClient Library. (2023). GitHub Repository. Diakses dari:

https://github.com/marvinroger/async-mqtt-client

Atmel. (2016). ATmega328/P Datasheet. Atmel Corporation.

Banks, A., & Gupta, R. (2014). MQTT Version 3.1.1. OASIS Standard.

Banzi, M., & Shiloh, M. (2014). Getting Started with Arduino. Maker Media.
Burhani, F., Zaenurrohman, Z., & Purwiyanto, P. (2022). Rancang Bangun

Monitoring Akuarium Dan Pakan Ikan Otomatis Berbasis Internet Of Things (10T).
Journal of Electrical Engineering and Computer (JEECOM), 4(2), 62-68.
https://ejournal.unuja.ac.id/index.php/jeecom/article/view/4309

Chaidir, A. R., Hidayatullah, A. S., Utomo, S. B., Cahyadi, W., Muldayani, W.,
Arifin, S., & Wicaksono, I. (2024). Evaluasi Pengujian Alat Pemberi Pakan lkan
Otomatis Berbasis 10T dengan Protokol MQTT. Jurnal Telematika, 19(1), 1-5.

https://journal.ithb.ac.id/index.php/telematika/article/view/624
clipse Mosquitto. (2023). Mosquitto MQTT Broker. Diakses dari:
https://mosquitto.org

Espressif Systems. (2023). ESP32 Technical Reference Manual. Espressif Systems.
Koromari, B. I., & David, F. (2023). Perancangan Dan Implementasi Sistem Pakan
Otomatis Dan Monitoring Tds Pada Akuarium lkan Hias Berbasis lot. IT-Explore:
Jurnal Penerapan Teknologi Informasi dan Komunikasi, 2(2), 154-164.
https://ejournal.uksw.edu/itexplore/article/view/8903

Ma'shumah, S., Pramarthaningthyas, E. K., & Rohman, F. (2024). Sistem

Monitoring Pemberian Pakan Ikan Di Aquarium Ikan Hias Menggunakan Aplikasi

Blynk Dengan Memanfaatkan Teknologi lot. Uranus : Jurnal limiah Teknik
Elektro, Sains dan Informatika, 2(3). https://doi.org/10.61132/uranus.v2i3.194
Mischianti, M. (n.d.). DOIT ESP32 Dev Kit V1 High-Resolution Pinout and Specs.
https://mischianti.org/doit-esp32-dev-kit-v1-high-resolution-pinout-and-specs/
Nurhidayah, T., Ulfah, M., & Jamal, N. (2024). Sistem Monitoring Kualitas Air
Dan Pakan Otomatis Budidaya Ikan Lele Berbasis Internet Of Things. Jurnal Fokus

93

https://www.arduino.cc/en/Reference/EEPROM
https://github.com/marvinroger/async-mqtt-client
https://ejournal.unuja.ac.id/index.php/jeecom/article/view/4309
https://journal.ithb.ac.id/index.php/telematika/article/view/624
https://mosquitto.org/
https://ejournal.uksw.edu/itexplore/article/view/8903
https://doi.org/10.61132/uranus.v2i3.194
https://mischianti.org/doit-esp32-dev-kit-v1-high-resolution-pinout-and-specs/?utm_source=chatgpt.com

Elektroda : Energi Listrik, Telekomunikasi, Komputer, Elektronika dan Kendali,
9(2). https://doi.org/10.33772/jfe.v9i2.174

PubSubClient Library. (2023). Arduino MQTT Library Documentation. Diakses
dari: https://pubsubclient.knolleary.net/

Wijaya, P., & Wellem, T. (2022). Perancangan dan Implementasi Sistem
Pemantauan Suhu dan Ketinggian Air pada Akuarium lkan Hias berbasis
[0T. Jurnal Sistem Komputer Dan Informatika (JSON), 4(1), 225-233.
https://doi.org/10.30865/json.v4i1.4539

Zenius. (2021, 8 April). Belajar Rumus Frekuensi Gelombang — Materi Fisika Kelas

11. Diakses dari https://www.zenius.net/blog/rumus-frekuensi/

94

https://doi.org/10.33772/jfe.v9i2.174
https://pubsubclient.knolleary.net/
https://doi.org/10.30865/json.v4i1.4539
https://www.zenius.net/blog/rumus-frekuensi/?utm_source=chatgpt.com

	KERJA PRAKTIK
	FAIRUS FRANS MAULANA PAMBAYUN SUGIARTO 22410200006
	2025

	NIM : 22410200006
	FAKULTAS TEKNOLOGI DAN INFORMATIKA UNIVERSITAS DINAMIKA
	2025

	LEMBAR PENGESAHAN
	ABSTRAK
	KATA PENGANTAR
	DAFTAR ISI
	DAFTAR TABEL
	Halaman

	DAFTAR GAMBAR
	DAFTAR LAMPIRAN
	Halaman

	BAB I PENDAHULUAN
	1.2 Rumusan Masalah
	1.3 Batasan Masalah
	1.4 Tujuan
	1.5 Manfaat

	BAB II
	2.1 Sejarah Universitas Dinamika
	2.2 Visi Misi Dan Tujuan Perusahaan
	2.2.1 Visi
	2.2.2 Misi
	2.2.3 Tujuan
	2.3 Profil Perusahaan
	2.4 Struktur Organisasi
	2.5 Program Studi S1 Teknik Komputer

	2.5.1 VISI MISI
	Visi:

	2.5.2 TUJUAN
	2.5.3 PROFESI LULUSAN
	BAB III LANDASAN TEORI
	3.1 Akuarium Hias

	3.2 ESP 32
	3.5 IOT MQTT PANEL
	3.6 Arduino IDE

	BAB IV DESKRIPSI PEKERJAAN
	4.1. Uraian Pekerjaan
	4.2 Diagram Alur Pengerjaan
	4.2.1 Studi Literatur Komponen
	4.2.3 Perancangan Rangkaian
	4.2.4 Pengujian Rangkaian
	4.3. Rangkaian Skematik Untuk Simulasinya
	4.3.1 Komponen yang Terlibat
	4.3.2 Sistem Penjadwalan dan Manajemen EEPROM
	4.3.3 Koneksi WiFi dan MQTT
	4.4 Studi Literatur
	4.4.1 Mempelajari EEPROM
	4.4.2 Mempelajari Koneksi WiFi
	4.4.3 Konsep Dasar MQTT dan Implementasinya pada ESP32/ESP8266
	4.5.1 Tujuan Pengujian
	4.5.2 Alat dan Bahan
	2. Bahan
	4.5.3 Deskripsi Singkat Komponen Utama
	4.5.4 Skema Hubungan Fisik Rangkaian
	4.5.5 Langkah Pengujian
	4.5.6 Pengujian Buzzer 1 Detik ON – 1 Detik OFF
	4.5.7 Pengujian Buzzer Menyala Setiap 10 Detik Sekali
	= 0,1 Hz
	4.5.8 Pengujian Buzzer Bunyi Setiap 1 Menit Selama 5 Detik
	4.5.9 Kodingan Buzzer Bunyi Menggunakan Millis()
	4.5.10 Pengujian Buzzer Menggunakan EEPROM
	4.5.11 Pengujian Buzzer Menggunakan Koneksi WIFI
	4.5.12 Pengujian Buzzer Menggunakan Koneksi MQTT
	4.6 Perancangan Rangkaian
	4.6.1 Skenario Pengujian Rangkaian
	4.6.2 Implementasi Simulasi di Ruang Dosen
	4.7.1 Deskripsi Umum Pengujian
	4.7.2 Skenario Pengujian
	4.7.3 Implementasi Pengujian
	4.7.4 Kodingan ARDUINO IDE

	BAB V PENUTUP
	5.1. Kesimpulan
	5.2. Saran

	DAFTAR PUSTAKA

