

Monitoring Notifikasi Jadwal Pemberian Pakan Ikan Akuarium

Menggunakan ESP32 dan Buzzer Berbasis MQTT

KERJA PRAKTIK

Program Studi

S1 Teknik Komputer

Oleh:

FAIRUS FRANS MAULANA PAMBAYUN SUGIARTO

22410200006

FAKULTAS TEKNOLOGI DAN INFORMATIKA

UNIVERSITAS DINAMIKA

2025

i

Monitoring Notifikasi Jadwal Pemberian Pakan Ikan Akuarium

Menggunakan ESP32 dan Buzzer Berbasis MQTT

Diajukan sebagai salah satu syarat untuk menyelesaikan

Program Sarjana

Disusun Oleh:

Nama : Fairus Frans Maulana

Pambayun Sugiarto

NIM : 22410200006

Program : S1(Strata Satu)

Jurusan : Teknik Komputer

FAKULTAS TEKNOLOGI DAN INFORMATIKA

UNIVERSITAS DINAMIKA

2025

ii

Tetap semangat meskipun dalam keadaan tidak baik- baik Saja

iii

Laporan Kerja Praktik ini

Saya Persembahkan kepada Keluarga Saya Tercinta,

Dosen Pembimbing,

Dan Saya Sendiri

iv

LEMBAR PENGESAHAN

Judul Kerja Praktik

Monitoring Notifikasi Jadwal Pemberian Pakan Ikan Akuarium

Menggunakan ESP32 dan Buzzer Berbasis MQTT

Laporan Kerja Praktik

oleh:

Fairus Frans Maulana Pambayun Sugiarto

22410200006

Telah diperiksa, diuji, dan disetujui

Surabaya, 20 November 2025

Disetujui

Dosen Pembimbing Penyelia,

Dr. Ira Puspasari, S.Si., M.T

NIDN. 0710078601
Pauladie Susanto, S.Kom., M.T.

NIDN. 0729047501

Mengetahui,

Ketua Program Studi S1 Teknik Komputer

Dr. Ira Puspasari, S.Si., M.T
NIDN. 0710078601

v

vi

ABSTRAK

Perawatan akuarium adalah salah satu bidang otomatisasi yang telah direvolusi oleh

perkembangan Internet of Things (IoT). Ketidakteraturan dalam pemberian pakan

ikan, baik konsistensi maupun waktu, adalah salah satu masalah umum yang dapat

membahayakan kesehatan ikan. Pada Ruang Dosen S1 Teknik Komputer

Universitas Dinamika, akuarium sering menjadi bagian dari suasana kerja, sehingga

diperlukan sistem yang dapat membantu menjaga pakan teratur. Penelitian kerja

praktek ini merancang dan mengimplementasikan sistem yang melacak jadwal

pemberian pakan ikan di akuarium menggunakan ESP32 dengan protokol

komunikasi MQTT. Sistem ini memiliki konektivitas Wi-Fi yang stabil dan

mendukung komunikasi ringan berbasis MQTT, dan dilengkapi dengan buzzer

untuk memberi tahu ikan bahwa waktu pemberian pakan telah tiba. Hasil pengujian

menunjukkan bahwa sistem mampu memberikan notifikasi tepat waktu dengan

rata-rata delay kurang dari 3 detik. Buzzer berhasil memberikan pengingat pada

setiap jadwal yang ditetapkan, yang memungkinkan pemberian pakan dilakukan

dengan lebih teratur. Oleh karena itu, sistem ini tidak hanya dapat membantu

menjaga kesehatan ikan, tetapi juga membuat dosing lebih mudah untuk dilakukan

saat memelihara ikan di akuarium.

Kata kunci: Internet of Things (IoT), ESP32, MQTT, Buzzer, Monitoring,

Notifikasi, Pemberian Pakan Ikan.

vii

KATA PENGANTAR

Dengan mengucapkan puji syukur ke hadirat Tuhan Yang Maha Esa atas

segala limpahan rahmat dan hidayah-Nya, penulis dapat menyelesaikan Laporan

Kerja Praktik dengan judul “Monitoring Notifikasi Jadwal Pemberian Pakan Ikan

Akuarium Menggunakan ESP32 dan Buzzer Berbasis MQTT.”

Laporan Kerja Praktik ini disusun dalam rangka penulisan laporan untuk lulus

mata kuliah Kerja Praktik pada Program Studi S1 Teknik Komputer Universitas

Dinamika Surabaya. Dalam penulisan Laporan Kerja Praktik ini tidak lepas dari

adanya bimbingan, nasihat, bantuan, saran, serta motivasi yang diberikan kepada

oleh pihak terkait. Oleh karena itu, penulis mengucapkan terima kasih kepada:

1. Orang tua saya yang selalu memberikan Doa, Dukungan dan Motivasi

selama mengikui kegiatan .

2. Bapak Pauladie Susanto, S.Kom., M.T., Selaku penyelia sekaligus Ketua

Program Studi S1 Teknik Komputer lama yang telah memberikan izin

kepada penulis untuk melakukan Kerja Praktik di Ruang Dosen S1 Teknik

Komputer .

3. Ibu Dr. Ira Puspasari, S.Si., M.T., selaku Ketua Program Studi S1 Teknik

Komputer baru sekaligus dosen pembimbing yang telah memberikan arahan

dan bimbingan selama proses kerja praktik dan peyusunan laporan ini.

4. Ibu Elisabeth Ria Anggreani A.Md.Keb., selaku koordinator kerja praktik

di Universitas Dinamika.

5. Bapak Charisma Dimas Affandi, S.T., selaku laboran yang telah

memberikan bimbingan dan bantuan dalam mengerjakan Project Akhir

Kerja Praktik di Universitas Dinamika.

Pihak-pihak lain yang tidak dapat disebutkan satu-persatu yang telah memberikan

bantuan dan dukungan kepada penulis.

Semoga Allah SWT memberikan balasan yang setimpal kepada semua pihak yang

telah membantu dan memberikan bimbingan serta nasehat dalam proses Kerja

Praktik ini. Penulis menyadari bahwa Kerja Praktik yang dikerjakan ini masih

banyak terdapat kekurangan sehingga kritik yang bersifat membangun dan saran

viii

dari semua pihak sangatlah diharapkan agar aplikasi ini dapat diperbaiki menjadi

lebih baik lagi. Semoga laporan ini dapat memberikan manfaat dan menjadi

referensi bagi pihak-pihak yang membutuhkan

Surabaya, 20 November 2025

Fairus Frans Maulana Pambayun Sugiarto

ix

DAFTAR ISI

Halaman

ABSTRAK.. vi

KATA PENGANTAR .. vii

DAFTAR ISI... ix

DAFTAR TABEL .. xii

DAFTAR GAMBAR .. xiii

DAFTAR LAMPIRAN .. xv

BAB I PENDAHULUAN ... 1

1.1 Latar Belakang ... 1

1.2 Rumusan Masalah .. 2

1.3 Batasan Masalah ... 2

1.4 Tujuan .. 3

1.5 Manfaat .. 4

BAB II GAMBARAN UMUM PERUSAHAAN .. 5

2.1 Sejarah Universitas Dinamika.. 5

2.2 Visi Misi dan Tujuan Perusahaan ... 6

2.2.1 Visi... 6

2.2.2 Misi ... 6

2.2.3 Tujuan .. 7

2.3 Profil Perusahaan .. 7

2.4 Struktur Organisasi .. 8

2.5 Program Studi S1 Teknik Komputer ... 8

2.5.1 VISI MISI ... 9

2.5.2 TUJUAN ... 10

2.5.3 PROFESI LULUSAN… .. 10

BAB III LANDASAN TEORI .. 11

3.1 Akuarium Hias ... 11

3.2 ESP 32 ... 12

3.3 Buzzer Low Level Trigger... 14

3.4 Internet Of Things (IOT) ... 15

3.5 IOT MQTT PANEL ... 16

3.6 Arduino IDE ... 17

BAB IV DESKRIPSI PEKERJAAN... 19

4.1 Uraian Pekerjaan ... 19

x

4.2 Diagram alur pengerjaan ... 19

4.2.1 Studi Literatur Komponen ... 20

4.2.2 Pengujian Buzzer Low Level Trigger ... 20

4.2.3 Perancangan Rangkaian .. 21

4.2.4 Pengujian Rangkaian .. 21

4.3 Rangkaian Skematik Untuk Simulasinya ... 22

4.3.1 Komponen yang Terlibat .. 22

4.3.2 Sistem Penjadwalan dan Manajemen EEPROM .. 23

4.3.3 Koneksi WiFi dan MQTT .. 23

4.3.4 Aplikasi Smartphone IOT MQTT PANEL .. 23

4.4 Studi Literatur .. 24

4.4.1 Mempelajari EEPROM .. 25

4.4.2 Mempelajari Koneksi WiFi .. 27

4.4.3 Konsep Dasar MQTT dan Implementasinya pada ESP32/ESP8266…..........28`

4.5 Pengujian Buzzer Low Level Trigger ... 31

4.5.1 Tujuan Pengujian ... 31

4.5.2 Alat dan Bahan .. 33

4.5.3 Deskripsi Singkat Komponen Utama ... 35

4.5.4 Skema Hubungan Fisik Rangkaian .. 37

4.5.5 Langkah Pengujian ... 39

4.5.6 Pengujian Buzzer 1 Detik ON – 1 Detik OFF ... 38

4.5.7 Pengujian Buzzer Menyala Setiap 10 Detik Sekali 41

4.5.8 Pengujian Buzzer Bunyi Setiap 1 Menit Selama 5 Detik…..... 46

4.5.9 Kodingan Buzzer Bunyi Menggunakan Millis() 49

4.5.10 Pengujian Buzzer Menggunakan EEPROM ... 53

4.5.11 Pengujian Buzzer Menggunakan Koneksi WIFI .. 67

4.5.12 Pengujian Buzzer Menggunakan Koneksi MQTT70

4.6 Perancangan Rangkaian .. 76

4.6.1 Skenario Pengujian Rangkaian ... 76

4.6.2 Implementasi Simulasi di Ruang Dosen ... 76

4.7 Pengujian Rangkaian Project Akhir ... 77

4.7.1 Deskripsi Umum Pengujian ... 77

xi

4.7.2 Skenario Pengujian .. 77

4.7.3 Implementasi Pengujian ... 78

4.7.4 Kodingan ARDUINO IDE ... 78

4.7.5 Output dan Pembahasan ... 83

BAB V PENUTUP... 91

5.1 Kesimpulan .. 91

5.2 Saran .. 92

DAFTAR PUSTAKA ... 93

LAMPIRAN .. 95

xii

DAFTAR TABEL

Halaman

Tabel 4.3.2 Address dan Fungsi EEPROM 23

Tabel 4.4.1 Perbandingan Singkat Penggunaan EEPROM 26

Tabel 4.5.2 Nama Alat dan Fungsi 33

Tabel 4.5.2 Nama Bahan, Spesifikasi, dan Fungsi 34

Tabel 4.5.4 Komponen Buzzer, Terhubung ke ESP32, dan Fungsi 37

Tabel 4.7.5 Hasil Uji Jadwal dan Status Buzzer 88

xiii

DAFTAR GAMBAR

Halaman

Gambar 2.3 Lokasi Ruang Prodi S1 Teknik Komputer Universitas Dinamika 7

Gambar 2.4 Struktur Organisasi 8

Gambar 3.1 Akuarium Hias 11

Gambar 3.2 ESP 32 DEVKIT V1 beserta PINOUT 12

Gambar 3.3 Buzzer Low Level Trigger 14

Gambar 3.5 IOT MQTT PANEL 16

Gambar 3.6 Arduino IDE 17

Gambar 4.2 Diagram Alur pengerjaan 19

Gambar 4.3 Rangkaian Skematik 22

Gambar 4.5.5.5 Output Durasi EEPROM 57

Gambar 4.5.5.5 Output Konfigurasi Buzzer Dari EEPROM 65

Gambar 4.5.5.5 Output masukkan ‘a','b','c' untuk mengubah pola 65

Gambar 4.5.5.5 Output Konfigurasi baru tersimpan pada Pola ‘a' 65

Gambar 4.5.5.5 Output Konfigurasi baru tersimpan pada Pola ‘b' 66

Gambar 4.5.5.5 Output Konfigurasi baru tersimpan pada Pola ‘c' 66

Gambar 4.5.5.6 Hasil output Koneksi WIFI 69

Gambar 4.5.5.7 Output Koneksi MQTT di Arduino IDE 74

Gambar 4.5.5.7 Output Koneksi MQTT di aplikasi IoT MQTT Panel Saat Posisi

Buzzer ON 74

Gambar 4.5.5.7 Output Koneksi MQTT di aplikasi IoT MQTT Panel Saat Posisi

Buzzer OFF 75

Gambar 4.7.1 Rangkaian Project Akhir Perangkat Keras (Hardware) 77

Gambar 4.7.5 Output Ketika sebelum koneksi MQTT stabil di ARDUINO IDE 84

Gambar 4.7.5 Output MQTT reconnect di ARDUINO IDE 84

xiv

Gambar 4.7.5 Saat Posisi Buzzer Idle 85

Gambar 4.7.5 Status Buzzer Aktif 85

Gambar 4.7.5 Jadwal Reset 86

Gambar 4.7.5 Ubah Jadwal 86

xv

DAFTAR LAMPIRAN

Halaman

Lampiran 1. Permohonan Surat Ijin Kerja Praktik di Perusahaan 95

Lampiran 2. Surat Balasan dari Perusahaan 96

Lampiran 3. Form KP-5 97

Lampiran 4. Form KP-6 99

Lampiran 5. Form KP-7 101

Lampiran 6. Form Bimbingan 102

Lampiran 7. Kodingan Arduino IDE 103

Lampiran 8. Screenshoot HP Aplikasi IOT MQTT PANEL 111

Lampiran 9. Biodata 119

1

1.1 Latar Belakang

BAB I

PENDAHULUAN

Perkembangan teknologi Internet of Things (IoT) telah mempermudah

banyak aspek kehidupan, seperti menjaga ikan hias di akuarium. Pakan yang

tidak teratur, baik dalam jumlah maupun waktu, adalah salah satu masalah

umum yang sering dihadapi, yang dapat berdampak negatif pada kesehatan ikan

dan lingkungan akuarium. Seringkali, di lingkungan akademik, terutama di

Ruang Dosen S1 Teknik Komputer Universitas Dinamika, ada akuarium untuk

kenyamanan dan hiasan. Namun, karena banyaknya aktivitas dosen, pemberian

pakan terkadang terlupakan atau tidak teratur. Akibatnya, diperlukan sebuah

sistem yang dapat melakukan monitoring dan sekaligus memberikan notifikasi

secara otomatis tentang jadwal pemberian pakan ikan.

Karena memiliki konektivitas Wi-Fi, daya komputasi yang tinggi, dan

kompatibel dengan protokol komunikasi ringan MQTT, ESP32 adalah

mikrokontroler yang ideal untuk digunakan. Dengan menambahkan buzzer,

sistem dapat memberikan notifikasi suara ketika jadwal pemberian pakan tiba.

Ini memudahkan dosen untuk memastikan ikan mendapatkan pakan tepat

waktu. Studi sebelumnya menunjukkan bahwa penggunaan Internet of Things

(IoT) dalam sistem pemberian pakan ikan otomatis dapat berhasil. Chaidir dkk.

(2024) mengontrol alat pemberi pakan dengan delay komunikasi yang rendah

dengan menggunakan ESP32 dan MQTT.

Sementara itu, Burhani dkk. (2022) menerapkan sistem IoT dan sensor

untuk memantau kualitas air dan pakan otomatis. Penelitian lain oleh Koromari

dan David (2023) merancang sistem pakan otomatis sekaligus monitoring TDS

berbasis ESP32 dan MQTT, yang menunjukkan keberhasilan implementasi

dalam hal pemeliharaan ikan hias di akuarium. Hasil penelitian ini menunjukkan

bahwa integrasi buzzer, ESP32, dan MQTT adalah solusi yang layak untuk

dikembangkan sebagai solusi untuk melacak jadwal pemberian pakan ikan di

ruang dosen.

2

1.2 Rumusan Masalah

Berdasarkan informasi di atas, rumusan masalah yang dapat diidentifikasi adalah

sebagai berikut:

1. Bagaimana merancang sistem pemantauan otomatis untuk pemberian pakan

ikan yang dapat diakses melalui jaringan Wi-Fi?

2. Apa saja bagian yang diperlukan untuk menerapkan sistem ini?

3. Bagaimana cara kerja bagian-bagian dalam sistem yang mengawasi pencarian

pakan ikan?

4. Dengan cara apa sistem akan memberi tahu pengguna tentang jadwal

pemberian pakan?

5. Seberapa efektif sistem ini dalam meningkatkan jumlah pakan yang diberikan

kepada ikan di akuarium ruang dosen secara teratur?

1.3 Batasan Masalah

Batasan masalah yang ditetapkan adalah sebagai berikut:

1. Ruang Lingkup Sistem: Sistem yang dikembangkan hanya akan diterapkan pada

akuarium ikan hias di Ruang Dosen S1 Teknik Komputer Universitas Dinamika,

untuk memastikan fokus dan kelayakan penelitian. Jenis akuarium lain tidak akan

diuji atau diimplementasikan.

2. Komponen Sistem: Penelitian ini tidak akan mengintegrasikan komponen sistem

lainnya, seperti sensor kualitas air, tetapi akan menggunakan mikrokontroler

ESP32, buzzer, dan modul komunikasi MQTT.

3. Notifikasi: Notifikasi hanya akan dikirim melalui buzzer suara. Tidak akan ada

notifikasi visual atau penggunaan aplikasi mobile lainnya.

4. Jadwal Pemberian Pakan: Pengguna akan menentukan jadwal pemberian pakan

secara manual, dan tidak akan menyertakan algoritma pembelajaran untuk

penyesuaian otomatis berdasarkan pola makan ikan.

5. Efektivitas dan Kualitas: Penelitian ini akan membahas efektivitas sistem dalam

hal konsistensi pemberian pakan, tetapi tidak akan membahas dampak jangka

panjang terhadap kesehatan ikan dan kualitas air, yang mungkin akan menjadi topik

penelitian lain di masa mendatang.

3

1.4 Tujuan

Tujuan penelitian ini adalah sebagai berikut:

1. Merancang Sistem Monitoring: Menciptakan sistem monitoring otomatis untuk

pemberian pakan ikan yang dapat diakses melalui jaringan Wi-Fi, memudahkan

pengguna untuk mengontrol jadwal pemberian pakan.

2. Identifikasi Komponen: Mengidentifikasi dan mendokumentasikan komponen

yang diperlukan untuk implementasi sistem, serta menjelaskan cara masing-

masing komponen bekerja.

3. Pengembangan Notifikasi: Buat sistem yang efektif dengan buzzer untuk

mengingatkan pengguna saat jadwal pemberian pakan tiba.

4. Evaluasi Efektivitas: Mengevaluasi seberapa efektif sistem ini dapat

meningkatkan konsistensi pemberian pakan ikan di akuarium ruang dosen dan

mengevaluasi tanggapan pengguna tentang penggunaan sistem.

5. Dampak terhadap Kesehatan Ikan: Melakukan analisis awal tentang efek

penggunaan sistem ini terhadap kesehatan ikan dan kualitas lingkungan

akuarium, meskipun hal ini tidak dilakukan secara menyeluruh dalam penelitian

ini.

1.5 Manfaat

Manfaat yang diharapkan dari penelitian ini adalah sebagai berikut:

1. Kemudahan dalam Pemeliharaan: Sistem ini akan membantu pemilik akuarium

memberi pakan ikan secara teratur, sehingga mengurangi risiko kesehatan ikan

karena pakan yang tidak teratur.

2. Monitoring Kualitas Air: Adanya sistem monitoring akan membuat pengguna

lebih mudah melacak kondisi lingkungan akuarium, termasuk kualitas air, yang

merupakan komponen penting dalam menjaga ikan.

3. Efisiensi Waktu: Pemilik ikan dapat menghemat waktu dengan sistem otomatis,

terutama bagi mereka yang sibuk, karena mereka tidak perlu memikirkan pakan

yang terlupakan.

4. Peningkatan Pengetahuan: Penelitian ini diharapkan dapat memberikan

wawasan baru tentang penerapan teknologi Internet of Things (IoT) dalam

akuakultur. Hasil penelitian ini akan menjadi dasar untuk penelitian selanjutnya.

4

5. Kontribusi pada Sektor Perikanan: Diharapkan dapat berdampak positif pada

ekonomi, terutama bagi komunitas yang terlibat dalam budidaya ikan hias,

dengan meningkatkan efisiensi dalam pemberian pakan dan pemeliharaan ikan.

6. Pengembangan Teknologi: Penelitian ini akan mendorong kemajuan teknologi

di bidang otomasi dan kontrol, serta aplikasi IoT dalam kehidupan sehari-hari.

5

BAB II

GAMBARAN UMUM PERUSAHAAN

2.1 Sejarah Universitas Dinamika

A. 30 April 1983, Pengembangan teknologi dan informasi menjadi hal penting

dalam pembangunan dan pengembangan nasional. Kedua hal tersebut juga

harus diiringi dengan di bidang ekonomi dan bisnis untuk bisa bersaing di

era yang terus berkembang. Seni dan budaya harus tetap di pertahankan agar

identitas bangsa tidak musnah. Melalui empat (4) hal utama, yaitu kritis,

kreatif, kolaborasi, dan komunikasi, para pendiri yang terdiri dari laksda.

TNI (Purn) Mardiono, Ir. Andrian A.T, Ir. Handoko A.T, Dra. Rosy

Merianti, Ak. dalam bidang teknologi informasi dengan nama AKIS

(Akademi Komputer dan Informatika Surabaya).

B. 10 Maret 1984, Izin operasional penyelenggara program Diploma III

Manajemen Informatika diberikan kepada AKIS melalui SK Kopertis

Wilayah VII Jawa Timur.

C. 19 Juni 1984, AKIS yang berlokasi di Ketintang Surabaya memperoleh

status terdaftar dari DIKTI.

D. 20 Maret 1986, Terus meningkatnya kebutuhan pendidikan, Yayasan Putra

Bhakti memutuskan untuk merubah Akademi menjadi Sekolah Tinggi.

AKIS (Akademi Komputer dan Informatika Surabaya) berubah menjadi

Sekolah Tinggi Manajemen Informatika dan Teknik Komputer Surabaya,

yang lebih dikenal dengan STIKOM Surabaya.

E. 11 Desember 1987, STIKOM Surabaya membangun kampus pertama yang

berlokasi di jalan Kutisari No.66 Surabaya, yang diresmikan oleh Letnan

Jendral TNI Wahono selaku Gubernur Jawa Timur pada saat itu.

F. 28 Oktober 1997, Awal pemasangan tiang pancang pertama STIKOM

Surabaya di Jalan Raya Kedung Baruk No.98 Surabaya bersamaan dengan

Hari Sumpah Pemuda.

G. 04 September 2014, Seiring dengan perubahan zaman serta kebutuhan

masyarakat, STIKOM Surabaya resmi berubah menjadi Institut dengan

6

nama Institut Bisnis dan informatika STIKOM Surabaya yang memiliki 2

fakultas dengan 9 program studi.

H. 29 Juli 2019, Melalui Surat Keputusan Riset Dikti, Institut Bisnis dan

Informatika STIKOM Surabaya resmi berubah menjadi Universitas

Dinamika yang memiliki 2 fakultas dengan 9 program studi, yakni Fakultas,

Prodi S1 Teknik Komputer, Prodi S1 Desain Komunikasi Visual, Prodi S1

Desain Produk, Prodi D4 Produksi Film dan Televisi, dan Prodi D3 Sistem

Informasi. Serta Fakultas Ekonomi dan Bisnis (FEB) dengan Prodi S1

Manajemen, Prodi S1 Akuntansi, dan Prodi D3 Administrasi Perkantoran.

I. 31 Mei 2021, Melalui Surat Keputusan Rektor, Universitas Dinamika

melakukan perubahan struktur organisasi dengan membentuk fakultas baru,

yakni Fakultas Desain dan Industri Kreatif (FDIK) dengan 3 program studi,

yaitu Prodi S1 Desain Produk, Prodi S1 Desain Komunikasi Visual, dan D4

Produksi Film dan Televisi yang sebelumnya berada dibawah naungan

Fakultas Teknologi dan Informatika (FTI).

2.2 Visi Misi Dan Tujuan Perusahaan

2.2.1 Visi

Menjadi smart entrepreneurial university berskala global yang produktif dalam

berinovasi.

2.2.2 Misi

1. Menyelenggarakan dan mengembangkan pendidikan berbasis teknologi

informasi yang bermutu dan berdaya saing global.

2. Melaksanakan penelitian yang berfokus pada pengembangan inovasi untuk

mewujudkan entrepreneurial university.

3. Melakukan pengabdian untuk menyebarluaskan ipteks dan hasil inovasi bagi

kesejahteraan masyarakat.

4. Melaksanakan kemitraan berskala global.

5. Mengembangkan bisnis dan kewirausahaan secara otonom yang akuntabel dan

transparan.

2.2.3 Tujuan

1. Menyelenggarakan pendidikan yang berkualitas, inovatif, dan futuristik.

7

2. Menciptakan SDM berdaya saing global dan berjiwa entrepreneur.

3. Menghasilkan penelitian berkualitas dan berskala global.

4. Menghasilkan inovasi yang bernilai jual dan bermanfaat bagi masyarakat.

5. Melaksanakan diseminasi ipteks dan/atau hasil inovasi untuk meningkatkan

kesejahteraan masyarakat.

6. Mewujudkan kemitraan berskala global.

7. Menjamin keberlanjutan Perguruan Tinggi.

2.3 Profil Perusahaan

Nama Instansi : Ruang Prodi S1 Teknik Komputer Universitas Dinamika

Alamat : Jl. Raya Kedung Baruk No. 98, Kedung Baruk, Kec.

Rungkut, Surabaya, Jawa Timur 60298

Gambar 2.3 Lokasi Ruang Prodi S1 Teknik Komputer Universitas Dinamika

(Sumber: https://www.google.com/maps/)

Email : universitasdinamika@dinamika.ac.id

Website : www.dinamika.ac.id

No Telfon & Faks: (031)8721731 / 8710218

Sosial Media

Facebook : Universitas Dinamika

Youtube : Universitas Dinamika

Instagram : @universitasdinamika

https://www.google.com/maps/
mailto:universitasdinamika@dinamika.ac.id
http://www.dinamika.ac.id/

8

2.4 Struktur Organisasi

Gambar 2.4 Struktur Organisasi

Lingkaran merah pada gambar tersebut menunjukkan Ruang Prodi S1

Teknik Komputer, yang berada di bawah Fakultas Teknologi dan Informatika,

Universitas Dinamika. Di Ruang Prodi inilah tempat melaksanakan kerja praktik

untuk merancang Simulasi Monitoring Notifikasi Jadwal Pemberian Pakan Ikan

Akuarium Menggunakan ESP 32 dan Buzzer Sebagai Alat perangkat Hardwarenya.

Untuk perangkat software nya Memantau kapan harus memberi pakan ikan

Akuarium Menggunakan MQTT sebagai pengontrol Jadwal Pemberian pakan Ikan

Akuarium.

2.5 Program Studi S1 Teknik Komputer

Program Studi S1 Teknik Komputer mulai beroperasi sejak tahun 1991.

Tujuan dari program ini adalah menghasilkan lulusan yang memiliki kompetensi di

bidang sistem komputer dan otomasi industri. Mahasiswa dibekali dengan berbagai

mata kuliah pendukung, seperti Mikrokontroler, Programmable Logic Controller

(PLC), Sistem Digital, Jaringan Komputer, serta Robotika. Lulusan dari program

ini diharapkan mampu melakukan analisis, perancangan, dan pengembangan sistem

otomasi industri yang berbasis komputer. Karier yang dapat dijalani antara lain

sebagai Computer System Engineer, Embedded System Developer, dan Automation

Engineer.

Program ini juga memberikan penekanan pada keseimbangan antara

pemahaman teoritis dan keterampilan praktis melalui kegiatan seperti praktikum,

9

penelitian, dan proyek akhir. Mahasiswa juga dibekali kemampuan dalam

pemrograman tingkat lanjut, pengolahan data, serta pengembangan sistem berbasis

kecerdasan buatan (AI). Kurikulum yang disusun selalu diperbarui agar selaras

dengan perkembangan kebutuhan industri, sehingga lulusan S1 Teknik Komputer

Universitas Dinamika mampu bersaing di dunia kerja maupun melanjutkan

pendidikan ke jenjang lebih tinggi.

Selain itu, mahasiswa diberikan peluang untuk mengikuti sertifikasi industri

seperti Cisco Certified Network Associate (CCNA) dan sertifikasi di bidang

embedded system programming, guna meningkatkan daya saing di dunia

profesional. Melalui kegiatan kerja praktik, mahasiswa dapat mengembangkan

keterampilan sesuai kebutuhan industri dan memperoleh pengalaman nyata

sebelum memasuki dunia kerja secara langsung.

2.5.1 VISI MISI

Visi:

Mengembangkan keilmuan di bidang IoT yang didukung oleh kecerdasan artifisial,

dan diintegrasikan dengan konsep technopreneurship, sehingga mampu

menciptakan inovasi yang bermanfaat bagi masyarakat dan industri berskala global.

Misi:

1. Mengembangkan pendidikan dan pengajaran di bidang Teknik Komputer yang

bermutu, berwawasan global, dan mengarah pada technopreneurship.

2. Melaksanakan penelitian di bidang Teknik Komputer yang inovatif dan solutif

bagi masyarakat dan industri berskala global.

3. Melaksanakan pengabdian atau penerapan hasil inovasi di bidang Teknik

Komputer yang bermanfaat bagi masyarakat dan industri.

2.5.2 TUJUAN

Tujuan Program Studi S1 Teknik Komputer adalah sebagai berikut:

1. Lulusan memiliki kemampuan menganalisis permasalahan sistem komputer

khususnya pada aspek perangkat lunak dan perangkat keras untuk

menghasilkan solusi bagi organisasi.

10

2. Lulusan memiliki kemampuan menganalisis perangkat lunak (meliputi

pemrograman antarmuka, pemrograman real-time) dan perangkat keras

(meliputi pemantauan, pengendalian) sistem komputer sebagai solusi bagi

permasalahan organisasi.

3. Lulusan memiliki kemampuan menganalisis dan merancang sistem

komputer dengan menerapkan sistem tertanam, Internet of Things (IoT),

kecerdasan artifisial, dan/atau jaringan komputer untuk menghasilkan solusi

bagi organisasi.

4. Lulusan yang memiliki kemampuan dalam merumuskan keputusan yang

tepat berdasarkan analisis informasi dan data, beretika, dan bertanggung

jawab pada pekerjaan dalam lingkup tugasnya.

2.5.3 PROFESI LULUSAN

Profesi Lulusan Program Studi

1. IoT Engineer : Menyediakan produk dan atau solusi IoT sesuai dengan

kebutuhan penggguna.

2. Artificial Intelligent Engineer : Membangun solusi berbasis kecerdasaan artifisial

(Artificial Intelligence/AI)

3. Network Designer : Melaksanakan penyediaan desain instalasi jaringan dan

infrastruktur meliputi kegiatan pemetaan kebutuhan, monitoring dan pengawasan

dampak design pembangunan dan pengembangan instalasi jaringan dan

infrastruktur yang dibutuhkan oleh user sejalan dengan rencana dan pengembangan

organisasi.

4. Digital Computer Technology Advisor : Memecahkan masalah teknis,

memberikan saran tentang perangkat keras dan perangkat lunak yang tepat, serta

mengoptimalkan penggunaan teknologi dalam bisnis atau kehidupan sehari-hari.

5. Industrial Automation : Meningkatkan efisiensi dan produktivitas sistem

produksi di industri

11

BAB III

LANDASAN TEORI

3.1 Akuarium Hias

Gambar 3.1 Akuarium Hias

Akuarium hias adalah tempat buatan di mana ikan, tanaman air, dan

dekorasi lainnya dipelihara untuk rekreasi, pendidikan, dan penelitian. Menurut

Wijaya dan Wellem (2022), akuarium kontemporer tidak hanya berfungsi sebagai

sarana estetika, tetapi juga telah berkembang menjadi alat untuk mengajar dan

mengeksplorasi teknologi, khususnya Internet of Things (IoT). Akuarium hias

mampu memperkenalkan konsep ekosistem perairan dalam ruang terbatas, yang

membuatnya berguna sebagai sarana edukasi. Dari perspektif teknologi, akuarium

juga menjadi tempat untuk mencoba berbagai inovasi. Misalnya, mereka dapat

memantau kualitas air, suhu, kadar oksigen, dan merancang sistem pemberian

pakan otomatis. Dengan kemajuan teknologi Internet of Things (IoT), akuarium

sekarang lebih dari sekadar tempat untuk menyimpan ikan. Mereka sekarang dapat

dihubungkan ke sensor, aktuator, dan sistem kendali berbasis mikrokontroler

seperti ESP32. Dengan integrasi ini, jaringan internet memungkinkan pemantauan

dan pengendalian parameter secara real-time.

Dengan membangun akuarium pintar, mahasiswa belajar tentang

penggunaan IoT untuk pengawasan dan otomasi. Penggunaan sensor untuk

memantau waktu pemberian pakan, pengaturan pencahayaan, dan pengiriman

12

notifikasi melalui platform MQTT (Message Queuing Telemetry Transport) adalah

beberapa contohnya. Oleh karena itu, akuarium yang indah tidak hanya membantu

dalam hal estetika dan hiburan, tetapi juga membantu dalam pengembangan

teknologi cerdas yang berkaitan dengan pendidikan, penelitian, dan penerapan

masyarakat.

3.2 ESP 32

Gambar 3.2 ESP 32 DEVKIT V1 beserta PINOUT

Sumber: (https://mischianti.org/doit-esp32-dev-kit-v1-high-resolution-

pinout-and-specs/)

ESP32 merupakan mikrokontroler generasi lanjut yang dikembangkan oleh

Espressif Systems sebagai penerus dari ESP8266 dengan kemampuan yang lebih

unggul. ESP32 mengintegrasikan prosesor dual-core Tensilica LX6 berkecepatan

hingga 240 MHz, memori SRAM, serta mendukung konektivitas Wi-Fi 802.11

b/g/n dan Bluetooth v4.2 (Classic dan BLE). Fitur-fitur ini menjadikan ESP32

sangat sesuai digunakan dalam proyek Internet of Things (IoT), termasuk pada

sistem monitoring dan kontrol perangkat cerdas berbasis MQTT.

Menurut Mischianti (n.d.), DOIT ESP32 Dev Kit V1 adalah salah satu varian

papan pengembangan yang banyak digunakan dalam penelitian IoT karena

menyediakan jumlah General Purpose Input Output (GPIO) yang melimpah,

mendukung antarmuka komunikasi digital (UART, SPI, I2C), serta mampu

beroperasi dengan konsumsi daya rendah (low power consumption). Selain itu,

penelitian ini juga mempelajari datasheet resmi ESP32 sebagai acuan teknis,

https://mischianti.org/doit-esp32-dev-kit-v1-high-resolution-pinout-and-specs/
https://mischianti.org/doit-esp32-dev-kit-v1-high-resolution-pinout-and-specs/

13

sehingga implementasi sistem sesuai dengan kemampuan dan keterbatasan

perangkat.

Dalam konteks sistem pemberian pakan ikan otomatis, ESP32 dipilih karena:

1. Kemampuan Wi-Fi terintegrasi, sehingga dapat langsung terhubung ke

broker MQTT tanpa memerlukan modul tambahan (Chaidir dkk. 2024).

2. Dukungan multitasking, yang memungkinkan ESP32 menjalankan proses

monitoring sensor dan mengontrol aktuator (seperti buzzer) secara

bersamaan.

3. Fleksibilitas antarmuka, sehingga dapat diintegrasikan dengan sensor

kualitas air, sensor pakan, hingga aktuator servo untuk sistem pemberian

pakan (Burhani dkk. 2022).

4. Efisiensi energi, yang penting untuk sistem monitoring jangka panjang pada

perangkat IoT (Nurhidayah dkk. 2024).

Beberapa penelitian terdahulu membuktikan peran penting ESP32 dalam

pengembangan sistem smart aquarium. Ma'shumah dkk. (2024) menggunakan

ESP32 terintegrasi dengan aplikasi Blynk untuk monitoring pakan ikan hias.Wijaya

dan Wellem (2022) juga memanfaatkan ESP32 dalam implementasi Smart

Aquarium yang mengoptimalkan pemantauan kondisi akuarium secara real-time.

Sementara Koromari dan David (2023) merancang sistem pakan otomatis sekaligus

monitoring TDS berbasis ESP32 dan MQTT, yang menunjukkan kinerja baik dalam

menjaga keteraturan pemberian pakan ikan hias.

14

3.3 Buzzer Low Level Trigger

Gambar 3.3 Buzzer Low Level Trigger

Sumber: (https://www.amazon.in/DAOKAI-Active-Buzzer-Trigger-

Arduino/dp/B0B5D6NDM2)

Buzzer adalah komponen elektronika yang dapat menghasilkan suara ketika

diberikan tegangan listrik. Buzzer terbagi menjadi dua jenis utama: buzzer

aktif (dapat berbunyi hanya ketika diberi tegangan) dan buzzer pasif

(membutuhkan sinyal frekuensi untuk menghasilkan suara). Ketika pin

input (I/O) diberi logika rendah (LOW = 0), rangkaian internal akan menjadi

lemah, sehingga buzzer akan aktif (menyala atau berbunyi). Dengan kata

lain, jika pin kontrol ESP32 diberi sinyal LOW, buzzer akan berbunyi dan

akan mati.

https://www.amazon.in/DAOKAI-Active-Buzzer-Trigger-Arduino/dp/B0B5D6NDM2
https://www.amazon.in/DAOKAI-Active-Buzzer-Trigger-Arduino/dp/B0B5D6NDM2

15

3.4 Internet of Things (IoT)

Paradigma teknologi yang dikenal sebagai Internet of Things (IoT)

memungkinkan perangkat elektronik terhubung satu sama lain melalui jaringan

internet, memungkinkan pertukaran data yang otomatis tanpa intervensi manusia

secara langsung. Perangkat fisik IoT dapat dihubungkan dengan sensor, aktuator,

dan sistem komunikasi, sehingga proses monitoring dan kontrol menjadi lebih

mudah (Koromari & David, 2023). IoT telah banyak dikembangkan dalam

budidaya ikan, terutama untuk sistem pakan otomatis dan pemantauan lingkungan

perairan. Nurhidayah dkk. (2024) mengembangkan sistem yang menggunakan

Internet of Things (IoT) untuk memantau kualitas air dan memberikan pakan kepada

ikan lele. Penelitian mereka menunjukkan bahwa penggunaan Internet of Things

(IoT) dapat membantu mengatur jadwal pemberian pakan dan kualitas air yang

stabil.

Selain itu, Ma'shumah dkk. (2024) mengembangkan sistem yang

mengawasi pemberian pakan ikan hias dengan aplikasi Blynk yang terintegrasi

dengan Internet of Things (IoT). Sistem ini memungkinkan pengguna mengontrol

jadwal pemberian pakan secara real-time melalui aplikasi mobile, meningkatkan

efisiensi dan fleksibilitas dalam pengelolaan akuarium. Selain itu, Wijaya dan

Wellem (2022) telah menerapkan IoT pada akuarium pintar, yang memungkinkan

sistem untuk secara otomatis memberikan pakan ikan dan mengontrol kondisi

lingkungan akuarium. Hal ini menunjukkan bahwa perangkat mikrokontroler dan

Internet of Things (IoT) dapat menghasilkan solusi kreatif yang bermanfaat dalam

bidang akuakultur kontemporer.

16

3.5 IOT MQTT PANEL

Gambar 3.5 IOT MQTT PANEL

Sumber:

(https://play.google.com/store/apps/details?id=snr.lab.iotmqttpanel.pro

d&hl=id)

Dengan menggunakan protokol Message Queuing Telemetry Transport

(MQTT), aplikasi mobile berbasis Android IoT MQTT Panel membantu

komunikasi antara perangkat Internet of Things (IoT) dan pengguna.

Aplikasi ini berfungsi sebagai client, memungkinkan pengguna untuk

mengirim perintah kontrol dan menerima subscribe untuk data monitoring

dari perangkat IoT. Dengan IoT MQTT Panel, pengguna dapat melihat data

sensor, melacak status perangkat, dan mendapatkan notifikasi secara real-

time.

Dalam penelitian yang dilakukan oleh Nurhidayah dkk. (2024), sistem

otomatis yang mengawasi kualitas air dan jadwal pemberian pakan ikan lele

terbukti mampu menjaga stabilitas kualitas lingkungan dan mengatur jadwal

pemberian pakan untuk budidaya ikan lele, menunjukkan betapa pentingnya

IoT diintegrasikan dengan aplikasi pendukung untuk memantau dan

mengontrol. Studi Ma'shumah dkk. (2024) menggunakan aplikasi Blynk

untuk sistem pemberian pakan ikan hias berbasis IoT, yang memungkinkan

pengguna menggunakan perangkat mobile mereka untuk mengatur jadwal

pakan. Panel MQTT IoT menawarkan kontrol jarak jauh dan kemudahan

integrasi dengan protokol MQTT.

https://play.google.com/store/apps/details?id=snr.lab.iotmqttpanel.prod&hl=id
https://play.google.com/store/apps/details?id=snr.lab.iotmqttpanel.prod&hl=id

17

Wijaya dan Wellem (2022) membuat ide untuk akuarium pintar yang

berbasis IoT yang secara otomatis mengatur pemberian pakan dan

memantau kondisi lingkungannya. Menurut penelitian ini, aplikasi berbasis

Internet of Things (IoT) dapat menjadi cara kreatif untuk meningkatkan

efisiensi pengelolaan akuarium. Dengan menggunakan mikrokontroler,

Koromari dan David (2023) membuat sistem pakan otomatis dan

pengawasan TDS untuk akuarium ikan hias berbasis IoT. Hasil penelitian

menunjukkan bahwa mikrokontroler dapat meningkatkan efisiensi dan

reliabilitas pengelolaan akuarium dan kolam ikan dengan

menggabungkannya dengan sistem Internet of Things (IoT).

3.6 Arduino IDE

Gambar 3.6 Arduino IDE

Sumber: (https://www.arduino.cc/en/software/)

Perangkat lunak open-source yang disebut Arduino IDE

memungkinkan Anda menulis, mengompilasi, dan mengunggah

program ke papan mikrokontroler, seperti Arduino dan ESP32. Arduino

IDE juga memiliki pustaka yang mendukung berbagai perangkat keras,

dan compiler, yang membantu Anda mengembangkan sistem berbasis

mikrokontroler.

Dalam penelitian ini, Arduino IDE digunakan untuk menulis

program pengendalian buzzer dan melakukan komunikasi data melalui

protokol MQTT pada modul ESP32. Ini memenuhi kebutuhan untuk

sistem pemantauan jadwal pemberian pakan ikan, di mana ESP32

berfungsi sebagai pusat pengendali yang menetapkan waktu bunyi

buzzer sebagai notifikasi.

https://www.arduino.cc/en/software/

18

Beberapa keunggulan Arduino IDE adalah sebagai berikut:

1. Mudah digunakan bahkan oleh pemula, dengan sintaks sederhana

berbasis bahasa C/C++;

2. Kompatibilitas luas, mendukung berbagai board mikrokontroler, seperti

Arduino Uno, Mega, ESP8266, dan ESP32.

3. Library lengkap yang memudahkan integrasi dengan sensor, aktuator,

dan protokol komunikasi seperti WiFi dan MQTT.

4. Dapat digunakan di berbagai platform, termasuk Windows, Linux, dan

macOS.

Arduino IDE dapat digunakan untuk menerapkan sistem Monitoring Notifikasi

Jadwal Pemberian Pakan Ikan Akuarium untuk:

A. Menulis kode program untuk mengatur interval bunyi buzzer dan durasi

bunyi sesuai kebutuhan.

B. Konfigurasi koneksi WiFi dan MQTT untuk memungkinkan ESP32

mengirim dan menerima data dari server broker.

C. Upload program ke ESP32 untuk memungkinkan sistem bekerja secara

otomatis dan fleksibel.

Studi sebelumnya menggunakan Arduino IDE dan mikrokontroler untuk sistem

pemberian pakan ikan otomatis, yang juga menggunakan teknologi Internet of

Things (IoT) (Ma'shumah, Pramarthaningthyas, & Rohman, 2024). Penggunaan

Arduino IDE dalam penelitian ini menunjukkan bahwa Arduino IDE tidak hanya

mendukung pembuatan sistem monitoring dasar, tetapi juga dapat diintegrasikan

dengan teknologi IoT untuk aplikasi di dunia nyata.

19

BAB IV

DESKRIPSI PEKERJAAN

4.1. Uraian Pekerjaan

Dalam proyek "Monitoring Notifikasi Jadwal Pemberian Pakan Ikan

Akuarium Menggunakan ESP32 dan Buzzer Berbasis MQTT", tugas-tugas

yang harus diselesaikan dijelaskan dalam uraian pekerjaan ini. Dibagi menjadi

beberapa tahapan utama untuk melaksanakan kegiatan kerja praktik. Tahap

pertama adalah membaca literatur. Ini mencakup mempelajari bagian dan ide

yang digunakan, seperti EEPROM, koneksi Wi-Fi dengan ESP32, dan protokol

komunikasi MQTT. Untuk memastikan bahwa komponen berfungsi sesuai

dengan perancangan, pengujian lanjutan dilakukan terhadap buzzer low level

trigger. Setelah tahap pengujian komponen selesai, proses dilanjutkan ke tahap

perancangan proyek akhir. Tahap ini mencakup pemrograman mikrokontroler

ESP32, proses perakitan perangkat keras, dan integrasi dengan sistem

komunikasi MQTT. Untuk memastikan bahwa proyek dapat beroperasi dengan

baik sesuai dengan tujuan yang telah ditetapkan, yaitu mengirimkan notifikasi

jadwal pemberian pakan ikan secara otomatis melalui koneksi ke sistem, tahap

berikutnya adalah pengujian sistem secara keseluruhan.

4.2 Diagram Alur Pengerjaan

Gambar 4.2 Diagram Alur pengerjaan

20

Diagram alur pekerjaan dari tugas praktik berjudul "Monitoring Notifikasi Jadwal

Pemberian Pakan Ikan Akuarium Menggunakan ESP32 dan Buzzer Berbasis

MQTT di Ruang Dosen S1 Teknik Komputer Universitas Dinamika" terdiri dari

beberapa tahapan, yaitu:

4.2.1 Studi Literatur Komponen

Pada tahap awal, informasi tentang fitur-fitur utama yang digunakan dalam sistem

dikumpulkan. Fitur-fitur tersebut meliputi:

a) ESP32 → sebuah mikrokontroler yang terintegrasi dengan WiFi dan Bluetooth

yang mendukung aplikasi Internet of Things (IoT) serta komunikasi berbasis

protokol MQTT

b) Buzzer Low Level Trigger → buzzer yang aktif saat menerima logika rendah,

sehingga dapat dikendalikan langsung oleh pin digital ESP32.

c) MQTT (Message Queuing Telemetry Transport) → protokol komunikasi ringan

dengan mekanisme publish/subscribe yang sangat efisien untuk sistem Internet

of Things (IoT).

Tahap literatur ini sangat penting untuk memastikan bahwa perangkat lunak dan

perangkat keras dapat berinteraksi sesuai kebutuhan sistem.

4.2.2 Pengujian Buzzer Low Level Trigger

Sebelum perancangan sistem dilakukan, buzzer diuji secara terpisah dengan metode

berikut:

a) delay() → Untuk menguji fungsi nyala-mati buzzer secara sederhana

(blocking).

b) millis() → Untuk pengaturan waktu non-blocking, sehingga ESP32

tetap dapat menjalankan tugas lain.

c) EEPROM → Digunakan untuk menyimpan konfigurasi jadwal pemberian

pakan agar data tetap tersimpan walaupun ESP32 dimatikan.

d) Koneksi WiFi → ESP32 dihubungkan ke jaringan WiFi kampus Universitas

Dinamika.

e) Koneksi MQTT → ESP32 diuji untuk melakukan publish dan subscribe

pesan, misalnya pada topik “esp32/buzzer” untuk memicu buzzer.

21

Hasil pengujian menunjukkan buzzer dapat berbunyi sesuai perintah dari broker

MQTT, sehingga komunikasi antara perangkat dan server berjalan dengan baik.

4.2.3 Perancangan Rangkaian

Rangkaian sistem yang dirancang terdiri atas:

1) Pin I/O 15 ESP32 terhubung ke buzzer low level trigger.

2) ESP32 terkoneksi ke jaringan WiFi kampus untuk komunikasi dengan

broker MQTT.

3) Catu daya ESP32 diperoleh dari adaptor atau USB 5V.

Catatan implementasi:

1) Akuarium fisik tidak digunakan pada tahap ini.

2) Sistem diuji dalam bentuk simulasi, dengan ketentuan sebagai berikut:

a) Buzzer berfungsi sebagai simulasi aktuator pemberian pakan.

b) EEPROM menyimpan jadwal pemberian pakan.

c) Timer berbasis fungsi millis() digunakan untuk pengaturan waktu.

d) Aplikasi smartphone atau MQTT Dashboard (HiveMQ) digunakan untuk

mengatur/reset jadwal dan memantau status buzzer.

Dari hasil perancangan, rangkaian dapat berfungsi sesuai dengan logika kontrol

yang telah ditentukan.

4.2.4 Pengujian Rangkaian

Pengujian sistem dilakukan dengan skenario sebagai berikut:

1. Jadwal pemberian pakan disimulasikan melalui server MQTT.

2. Saat jadwal tercapai, broker MQTT mengirimkan pesan ke ESP32.

3. ESP32 kemudian memicu buzzer untuk berbunyi sebagai notifikasi.

4. Buzzer berperan sebagai alarm simulasi agar dosen maupun mahasiswa

mengetahui waktu pemberian pakan, tanpa memerlukan pemantauan

langsung ke akuarium.

Implementasi simulasi di ruang dosen S1 Teknik Komputer Universitas Dinamika:

a) Perangkat yang digunakan adalah ESP32 DevKit V1 dan buzzer low level

trigger.

b) Komunikasi dilakukan melalui WiFi kampus dengan broker MQTT

(HiveMQ Dashboard/Smartphone App).

22

c) Akuarium fisik tidak digunakan, seluruh proses berbasis simulasi jadwal dan

status buzzer.

d) Status sistem dapat dipantau secara real-time melalui dashboard MQTT.

4.3. Rangkaian Skematik Untuk Simulasinya

Gambar 4.3 Rangkaian Skematik

Pada Kerja Praktik dengan judul “Monitoring Notifikasi Jadwal Pemberian

Pakan Ikan Akuarium Menggunakan ESP32 dan Buzzer Berbasis MQTT di Ruang

Dosen S1 Teknik Komputer Universitas Dinamika”, rangkaian sistem dirancang

dalam bentuk simulasi tanpa menggunakan akuarium fisik. Simulasi ini

menggunakan ESP32 DevKit V1 sebagai mikrokontroler utama yang terhubung ke

buzzer low-level trigger, jaringan WiFi kampus, serta broker MQTT.

4.3.1 Komponen yang Terlibat

A. ESP32 DevKit V1 → Bertugas sebagai pengendali utama, mengatur

penjadwalan, manajemen EEPROM, serta komunikasi dengan broker

MQTT.

B. Buzzer Low-Level Trigger → Berfungsi sebagai simulasi aktuator

pemberian pakan, yang akan berbunyi saat pin ESP32 berada pada kondisi

logika LOW.

C. Kabel Jumper Male-to-Male → Digunakan untuk menghubungkan pin I/O

ESP32 dengan buzzer.

23

4.3.2 Sistem Penjadwalan dan Manajemen EEPROM

EEPROM dipakai untuk menyimpan konfigurasi jadwal pemberian pakan,

dengan alokasi address sebagai berikut. Tabel address dan Fungsi EEPROM

dilihat di bawah ini :

Tabel 4.3.2 Address dan Fungsi EEPROM

Address Fungsi Nilai

Default

Keterangan

0 Banyaknya bunyi buzzer

per hari

2 Dapat diubah melalui aplikasi

MQTT

4 Lamanya bunyi buzzer (ms) 500 Durasi buzzer berbunyi

8 Reset Banyak 2 Digunakan saat perintah “Reset

Jadwal”

12 Reset LamaMS 500 Digunakan saat perintah “Reset

Jadwal”

4.3.3 Koneksi WiFi dan MQTT

A. WiFi

1) Koneksi dilakukan pada fungsi setup().

2) Koneksi dicek secara periodik setiap 30 detik. Jika terputus, ESP32 akan

melakukan reconnect otomatis.

B. MQTT

1) MQTT bergantung pada koneksi WiFi yang aktif.

2) Status koneksi dicek setiap 10 detik.

3) MQTT digunakan untuk publish dan subscribe dengan topik tertentu,

misalnya:

i. Status buzzer (aktif/mati).

ii. Perintah “Ubah Jadwal” atau “Reset Jadwal”.

4.3.4 Aplikasi Smartphone IOT MQTT PANEL

1) Informasi yang ditampilkan:

a) Waktu hitung mundur dalam format jam:menit:detik (2 digit).

24

b) Status buzzer (aktif/mati).

2) Fitur utama:

a) Ubah Jadwal → input jumlah bunyi buzzer (Banyak) dan durasi bunyi

(LamaMS) yang kemudian disimpan ke EEPROM.

b) Reset Jadwal → mengembalikan konfigurasi jadwal ke nilai default yang

tersimpan di EEPROM.

Dengan demikian, rangkaian skematik simulasi ini berhasil membuktikan bahwa

integrasi antara ESP32, buzzer, EEPROM, serta komunikasi berbasis MQTT dapat

berjalan sesuai dengan logika sistem yang dirancang. Implementasi fisik dengan

akuarium dapat dilakukan pada tahap selanjutnya apabila fasilitas tersedia. Sebelum

melanjutkan ke tahap pembuatan proyek akhir, terlebih dahulu dilakukan

penjelasan secara lebih detail mengenai proses perancangan dan pelaksanaan

proyek akhir yang telah dibuat.

4.4 Studi Literatur

Dalam penelitian ini, sistem monitoring notifikasi jadwal pemberian pakan

ikan akuarium berbasis IoT menggunakan beberapa komponen utama yang saling

terintegrasi. Komponen utama yang digunakan adalah ESP32 yang berfungsi

sebagai mikrokontroler sekaligus pusat pengendali. ESP32 memiliki prosesor

ganda, dilengkapi modul WiFi dan Bluetooth terintegrasi, serta mendukung

berbagai protokol komunikasi sehingga sangat sesuai untuk implementasi Internet

of Things (IoT).

Selain itu, sistem menggunakan buzzer Low Level Trigger sebagai media

notifikasi suara. Buzzer akan aktif ketika menerima logika rendah (LOW) dan dapat

diatur pola bunyinya menggunakan fungsi delay maupun millis agar durasi dan

interval notifikasi dapat disesuaikan sesuai kebutuhan.

Untuk mendukung penyimpanan data, digunakan EEPROM yang memungkinkan

penyimpanan informasi seperti jadwal pemberian pakan ataupun konfigurasi sistem

yang tetap tersimpan meskipun perangkat dimatikan. Sementara itu, koneksi

jaringan memanfaatkan WiFi yang sudah tertanam pada ESP32, sehingga perangkat

25

dapat terhubung ke internet dan melakukan komunikasi data secara real-time.

Protokol yang digunakan adalah MQTT (Message Queuing Telemetry Transport),

protokol komunikasi ringan yang banyak digunakan pada aplikasi IoT. MQTT

memungkinkan ESP32 mengirim status maupun notifikasi jadwal pemberian pakan

ke broker, yang kemudian diteruskan ke perangkat lain seperti komputer atau

smartphone untuk keperluan monitoring.

Dengan integrasi ESP32, buzzer, EEPROM, WiFi, dan protokol MQTT,

sistem mampu memberikan notifikasi jadwal pemberian pakan ikan akuarium

secara efektif dan real-time. Aktivasi buzzer diatur menggunakan delay maupun

millis sehingga durasi dan interval bunyi dapat disesuaikan. Pengaturan ini

terintegrasi dengan penyimpanan data di EEPROM, konektivitas WiFi, serta

protokol komunikasi MQTT. Implementasi sistem ini dilakukan sebagai bentuk

penerapan konsep IoT dalam lingkungan akademik, khususnya di ruang dosen S1

Teknik Komputer Universitas Dinamika.

4.4.1 Mempelajari EEPROM

Memori non-volatile yang disebut EEPROM (Electrically Erasable Programmable

Read-Only Memory) memiliki kemampuan untuk menyimpan data meskipun

perangkat tidak memiliki pasokan listrik. EEPROM biasanya ada di dalam

mikrokontroler, seperti ATmega328 di Arduino UNO, atau dapat dimasukkan ke

chip eksternal melalui antarmuka I2C, seperti 24C02 dan 24C256. Meskipun

memiliki batas siklus tulis atau hapus (sekitar 100.000 hingga 1.000.000 kali),

EEPROM memiliki kelebihan bahwa data dapat ditulis dan dibaca berkali-kali

(Arduino, 2023; Banzi & Shiloh, 2014).

Karakteristik utama EEPROM adalah sebagai berikut:

1) Non-volatile → data tetap tersimpan meskipun perangkat dimatikan.

2) Akses per byte → memungkinkan pembacaan atau penulisan data pada

alamat tertentu.

3) Proses penulisan lebih lambat daripada RAM atau Flash

4) Batas umur pemakaian → tidak cocok untuk aplikasi yang membutuhkan

penulisan data terus-menerus (Atmel, 2016).

Fungsi dan Contoh Penggunaan EEPROM:

a) Menyimpan password WiFi ESP32.

26

b) Menyimpan nilai ambang sensor, misal sensor MQ2 atau suhu.

c) Menyimpan kalibrasi sensor.

d) Mencatat jumlah pakan ikan terakhir (automatic feeder).

e) Menyimpan log status relay, motor, atau buzzer (Espressif Systems, 2023).

Cara Penggunaan:

i. Arduino Uno/Nano/Mega → library EEPROM sudah tersedia:

#include <EEPROM.h>

ii. ESP8266/ESP32 → EEPROM disimulasikan di Flash:

EEPROM.begin(size);

EEPROM.commit();

Untuk perbandingan singkat terkait Penggunaan EEPROM untuk board

Arduino UNO/Nano/Mega dan ESP 8266/ ESP32 dapat dilihat di bawah ini:

Tabel 4.4.1 Perbandingan Singkat Penggunaan EEPROM

Board Library Inisialisasi Commit

Arduino

Uno/Nano/Meg

a

#include

<EEPROM.h

>

Tidak perlu Tidak perlu

ESP8266/ESP3

2

#include

<EEPROM.h

>

EEPROM.begin(size

)

EEPROM.commit(

)

Penulisan dan Pembacaan Data EEPROM:

a) EEPROM.write(address, value) → menyimpan 1 byte.

b) EEPROM.put(address, value) → menyimpan tipe data kompleks (int,

float, struct).

c) EEPROM.read(address) → membaca 1 byte.

d) EEPROM.get(address, value) → membaca data tipe kompleks.

27

4.4.2 Mempelajari Koneksi WiFi

ESP32 dan ESP8266 memiliki modul WiFi bawaan, memungkinkan

koneksi nirkabel tanpa modul tambahan (Espressif Systems, 2023).

Mode utama WiFi:

A. Station Mode (STA) → ESP32 bertindak sebagai klien yang terhubung ke

router.

Mengirim/menerima data, akses server, komunikasi antar perangkat.

#include <WiFi.h>

const char* ssid = "NAMA_WIFI";

const char* password = "PASSWORD_WIFI";

void setup() {

Serial.begin(115200);

WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED) delay(500);

Serial.println(WiFi.localIP());

}

void loop() {}

B. Access Point Mode (AP) → ESP32 membuat hotspot sendiri.

WiFi.softAP("ESP32_AP","12345678");

Serial.println(WiFi.softAPIP());

C. Mode Ganda (STA + AP) → terhubung ke router dan membuat hotspot

sekaligus.

WiFi.mode(WIFI_AP_STA);

WiFi.begin(routerSsid, routerPassword);

WiFi.softAP(apSsid, apPassword);

Aplikasi setelah terkoneksi:

i. Mengirim data ke server/database IoT.

ii. Menjalankan web server.

28

iii. Menggunakan MQTT untuk komunikasi real-time.

iv. Remote control, misal menyalakan buzzer pemberitahuan jadwal pakan ikan.

4.4.3 Konsep Dasar MQTT dan Implementasinya pada ESP32/ESP8266

1. Pahami Konsep Dasar

MQTT (Message Queuing Telemetry Transport) adalah protokol

komunikasi ringan berbasis publish/subscribe, yang dirancang untuk aplikasi

IoT karena hemat bandwidth dan responsif (Banks & Gupta, 2014). Kapan

digunakan: Cocok untuk perangkat IoT seperti ESP32, sensor, dan smart home.

Komponen utama:

1. Broker → pusat distribusi pesan, contohnya Mosquitto atau HiveMQ.

2. Client Publisher → perangkat yang mengirim data.

3. Client Subscriber → perangkat yang menerima data.

4. Topic → saluran atau label pesan, misalnya sensor/suhu atau rumah/lampu.

2. Library MQTT (Step by Step)

A. PubSubClient (Arduino/ESP32/ESP8266)

Library ini paling sering digunakan di Arduino IDE karena ringan dan mudah

digunakan, dapat berfungsi sebagai Publisher maupun Subscriber, serta

kompatibel dengan WiFi.h (ESP32) atau ESP8266WiFi.h (ESP8266)

(PubSubClient Library, 2023).

Contoh Kode Dasar:

#include <WiFi.h>

#include <PubSubClient.h>

// WiFi

const char* ssid = "NAMA_WIFI";

const char* password = "PASSWORD_WIFI";

29

// MQTT Broker

const char* mqtt_server = "broker.hivemq.com";

const int mqtt_port = 1883;

WiFiClient espClient;

PubSubClient client(espClient);

// Callback untuk menerima pesan

void callback(char* topic, byte* message, unsigned int

length) {

Serial.print("Pesan dari topic: ");

Serial.println(topic);

Serial.print("Isi: ");

for (int i = 0; i < length; i++) {

Serial.print((char)message[i]);

}

Serial.println();

}

 Fungsi utama: client.publish() untuk mengirim pesan,

client.subscribe() untuk menerima pesan.

 Perlu koneksi WiFi sebelum menggunakan broker (WiFi.begin(ssid,

password)).

B. AsyncMqttClient (ESP32/ESP8266)

Library ini bersifat non-blocking, sehingga loop ESP32 tidak macet saat menangani

banyak topic atau menjalankan webserver bersamaan. Cocok untuk proyek real-

time (ESPAsyncTCP/AsyncTCP) (AsyncMqttClient Library, 2023).

Contoh Kode Singkat:

#include <WiFi.h>

#include <AsyncMqttClient.h>

AsyncMqttClient mqttClient;

30

void onMqttMessage(char* topic, char* payload,

AsyncMqttClientMessageProperties properties,

size_t len, size_t index, size_t total) {

Serial.print("Pesan dari topic: ");

Serial.println(topic);

for (size_t i = 0; i < len; i++) {

Serial.print((char)payload[i]);

}

Serial.println();

}

mqttClient.publish() → mengirim pesan secara asinkron.

Lebih cepat dan stabil untuk menangani banyak topik sekaligus.

3. Eclipse Mosquitto

Mosquitto adalah broker MQTT open-source yang berfungsi sebagai perantara

antara publisher dan subscriber (Eclipse Mosquitto, 2023).

i. Cara Kerja:

1. Publisher mengirim data ke broker pada topik tertentu.

2. Broker menerima pesan dan menyimpannya sesuai topik.

3. Subscriber yang subscribe ke topik akan menerima pesan tersebut.

ii. Keunggulan Mosquitto:

a. Ringan & cepat, cocok untuk perangkat dengan sumber daya terbatas.

b. Open-source & gratis, banyak digunakan di industri dan penelitian.

c. Mendukung QoS (Quality of Service):

o QoS 0 → kirim sekali tanpa jaminan diterima.

o QoS 1 → kirim minimal sekali dengan konfirmasi.

o QoS 2 → kirim tepat sekali (paling aman).

d. Dapat dijalankan di Windows, Linux, macOS, bahkan Raspberry Pi.

31

e. Mendukung autentikasi (username/password) dan TLS/SSL untuk

keamanan.

4. Contoh Kasus Penerapan MQTT

Misalnya membuat alat monitoring suhu dan asap dengan ESP32:

a) ESP32 (Publisher) mengirim data suhu ke topic rumah/suhu.

b) ESP32 lain atau aplikasi smartphone (Subscriber) menerima update real-

time.

c) Dapat ditambahkan aturan otomatis, misal jika suhu tinggi, buzzer menyala

melalui subscriber.

4.5 Pengujian Buzzer Low Level Trigger

4.5.1 Tujuan Pengujian

Tujuan dari pengujian ini adalah untuk memastikan bahwa modul buzzer aktif

rendah (low level trigger) yang digunakan pada sistem ESP32 dapat bekerja secara

optimal dan sesuai dengan prinsip kerja logika pemicunya. Modul buzzer ini

menggunakan sistem low level trigger, artinya buzzer akan menyala ketika

menerima logika LOW (0) dan mati ketika menerima logika HIGH (1) dari

mikrokontroler. Secara umum, pengujian ini memiliki beberapa tujuan utama

sebagai berikut:

1. Memverifikasi fungsi dasar buzzer aktif rendah

Pengujian dilakukan untuk memastikan bahwa buzzer dapat berbunyi ketika

diberikan logika LOW dan berhenti ketika diberikan logika HIGH. Hal ini

penting karena beberapa jenis buzzer memiliki logika kerja yang berbeda (high

trigger atau low trigger), sehingga verifikasi diperlukan untuk menghindari

kesalahan logika kontrol.

2. Menguji pengendalian waktu bunyi dan diam menggunakan fungsi

delay()Tahap awal pengujian bertujuan memastikan bahwa sistem mampu

mengatur durasi buzzer menyala dan mati secara bergantian dengan

menggunakan fungsi penundaan sederhana delay(). Hal ini digunakan untuk

memahami dasar timing dalam kontrol aktuator.

32

3. Menguji metode kontrol non-blocking menggunakan fungsi millis()

Pengujian ini dilakukan untuk memastikan sistem dapat mengatur waktu kerja

buzzer tanpa menghentikan proses lain pada mikrokontroler. Dengan metode

millis(), sistem dapat melakukan multitasking seperti membaca sensor,

mengirim data, atau menjaga koneksi WiFi/MQTT tanpa terganggu oleh jeda

delay.

4. Menguji penyimpanan konfigurasi durasi buzzer menggunakan EEPROM

Tujuan selanjutnya adalah memastikan bahwa durasi bunyi buzzer dapat

disimpan secara permanen di dalam EEPROM, sehingga meskipun perangkat

dimatikan atau di reset, nilai konfigurasi tersebut tetap tersimpan dan digunakan

kembali pada saat perangkat dinyalakan ulang.

5. Menguji kemampuan sistem dalam mengubah pola bunyi melalui input Serial

Sistem diuji agar mampu menerima perintah dari pengguna melalui Serial

Monitor untuk mengubah pola bunyi (misalnya pola a, b, atau c) dengan variasi

waktu ON dan OFF yang berbeda. Hal ini menunjukkan fleksibilitas sistem

dalam pengaturan pola kerja aktuator tanpa perlu memodifikasi kode program.

6. Menguji konektivitas dan kontrol jarak jauh melalui protokol MQTT. Pengujian

ini bertujuan memastikan buzzer dapat dikendalikan secara real-time melalui

jaringan WiFi dan protokol MQTT, dengan topik tertentu untuk subscribe dan

publish. Hal ini membuktikan bahwa sistem buzzer telah terintegrasi dengan

konsep IoT (Internet of Things) dan dapat menerima perintah dari server atau

aplikasi jarak jauh.

7. Menilai stabilitas dan konsistensi kerja buzzer selama operasi jangka panjang

Pengujian juga dilakukan untuk mengamati apakah buzzer tetap dapat

beroperasi stabil dalam jangka waktu tertentu, tanpa mengalami delay yang

tidak diinginkan atau kesalahan logika akibat penggunaan metode waktu yang

berbeda.

Dengan demikian, secara keseluruhan, pengujian ini tidak hanya berfokus

pada fungsi dasar buzzer, tetapi juga menilai keandalan, fleksibilitas, dan

integrasi sistem kontrol berbasis ESP32 baik secara lokal maupun melalui

jaringan IoT. Hasil pengujian ini akan menjadi dasar dalam menentukan

33

keefektifan rangkaian dan program dalam implementasi sistem notifikasi

berbasis buzzer.

4.5.2 Alat dan Bahan

Pada tahap pengujian buzzer low level trigger ini, digunakan beberapa alat

dan bahan untuk mendukung proses perancangan, pemrograman, serta

pengujian sistem berbasis ESP32. Adapun alat dan bahan yang digunakan

dijelaskan sebagai berikut:

1. Alat

Alat yang digunakan dalam pengujian berfungsi untuk membantu proses

perakitan, pemrograman, dan pemantauan hasil pengujian sistem buzzer.

Berikut daftar alat yang digunakan bisa dilihat Pada tabel di bawah ini:

Tabel 4.5.2 Nama Alat dan Fungsi

No Nama Alat Fungsi

1 Laptop Digunakan untuk menulis kode program,

melakukan kompilasi, serta mengunggah program

ke mikrokontroler ESP32 menggunakan software

Arduino IDE.

2 Kabel Data USB

Micro USB

Sebagai media penghubung antara laptop dan

board ESP32 untuk proses upload program dan

komunikasi serial.

3 Kabel Jumper (Male

to Female) (Male to

Male)

(Female to Female)

Digunakan untuk menghubungkan pin ESP32

dengan pin pada modul buzzer secara fleksibel.

4 Koneksi WiFi Lokal Diperlukan untuk melakukan pengujian sistem

berbasis IoT yang melibatkan koneksi MQTT

secara real-time.

34

2. Bahan

Bahan yang digunakan terdiri atas perangkat keras dan perangkat lunak

pendukung sistem. Setiap bahan memiliki peran penting dalam pengujian fungsi

buzzer berbasis ESP32. Berikut daftar bahan yang digunakan bisa dilihat Pada

tabel di bawah ini:

Tabel 4.5.2 Nama Bahan, Spesifikasi, dan Fungsi

No Nama

Bahan

Spesifikasi Fungsi

1 ESP32 DoIt DevKit V1 Mikrokontroler

dengan prosesor dual-

core 240 MHz, Wi-Fi

802.11 b/g/n,

Bluetooth v4.2, dan

GPIO multifungsi

Berfungsi sebagai pusat

kendali sistem yang

mengatur logika kerja

buzzer dan komunikasi

jaringan.

2 Modul Buzzer Aktif

(Low Level Trigger)

Tegangan kerja 3.3V –

5V

Sebagai aktuator yang

menghasilkan bunyi saat

menerima logika LOW

dari ESP32.

3 Software Arduino

IDE

Versi 2.x atau terbaru Sebagai platform

pemrograman untuk

menulis, mengunggah,

dan memantau hasil

program melalui Serial

Monitor.

4 Library

Tambahan

•

EEPROM.h

- Untuk menyimpan dan

membaca data

konfigurasi buzzer

35

 (misalnya durasi

bunyi) secara

permanen di memori

internal ESP32.

• WiFi.h - Untuk

menghubungkan

ESP32 ke jaringan

WiFi lokal dalam

komunikasi IoT.

•

PubSubClient.h

- Untuk

mengimplementasikan

komunikasi MQTT

antara ESP32 dan

broker IoT.

5 Broker MQTT:

broker.hivemq.com

Untuk pengujian Buzzer

Low Level Trigger Atau

mqtt.dinamika.ac.id

Untuk project akhir

Public MQTT broker Digunakan sebagai

perantara (server) untuk

komunikasi pesan antara

ESP32 dan perangkat

atau aplikasi lain melalui

protokol MQTT.

4.5.3 Deskripsi Singkat Komponen Utama

Pada pengujian sistem buzzer berbasis ESP32 DoIt DevKit V1, terdapat

beberapa komponen utama yang saling terintegrasi untuk membentuk sistem

kontrol berbasis Internet of Things (IoT). Masing-masing komponen memiliki

peran penting dalam memastikan sistem dapat berfungsi secara optimal. Berikut

adalah penjelasan dari setiap komponen utama:

a. ESP32 DoIt DevKit V1

ESP32 merupakan mikrokontroler generasi lanjutan yang dikembangkan

oleh Espressif Systems, dan menjadi penerus dari seri ESP8266 dengan

36

kemampuan yang lebih tinggi. Menurut Mischianti (n.d.), ESP32 dilengkapi dengan

prosesor dual-core Tensilica LX6 berkecepatan hingga 240 MHz, memori SRAM

internal, serta dukungan konektivitas Wi-Fi 802.11 b/g/n dan Bluetooth v4.2

(Classic dan BLE).

Dalam pengujian ini, ESP32 berfungsi sebagai pusat pengendali utama yang:

1. Mengatur kondisi ON/OFF buzzer berdasarkan sinyal logika digital

(LOW/HIGH).

2. Menyimpan konfigurasi durasi bunyi buzzer di EEPROM, agar data tetap

tersimpan meskipun perangkat di reset.

3. Mengatur komunikasi jaringan menggunakan protokol Wi-Fi dan MQTT,

untuk memungkinkan kontrol jarak jauh melalui broker HiveMQ.

Selain itu, ESP32 dipilih karena memiliki kemampuan pemrosesan yang cepat, port

input/output (GPIO) yang fleksibel, serta kompatibilitas tinggi dengan Arduino

IDE, sehingga mempermudah proses pemrograman dan integrasi perangkat.

b. Modul Buzzer Aktif Low (Low Level Trigger)

Modul buzzer aktif low merupakan aktuator audio yang menghasilkan suara

ketika menerima logika digital LOW (0V) dan berhenti berbunyi ketika

menerima logika HIGH (3.3V). Jenis buzzer ini disebut low level trigger, karena

aktif saat tegangan rendah.

Dalam sistem ini:

a) Ketika ESP32 memberikan sinyal LOW → buzzer ON (berbunyi).

b) Ketika ESP32 memberikan sinyal HIGH → buzzer OFF (diam).

Karena ESP32 beroperasi pada tegangan logika 3.3V, buzzer tipe ini

sangat cocok digunakan karena tidak membutuhkan arus besar dan tetap

dapat bekerja stabil tanpa transistor tambahan. Buzzer ini berfungsi sebagai

indikator suara dalam sistem notifikasi, yang digunakan untuk memberi

tanda atau peringatan berdasarkan program yang dijalankan.

c. Koneksi Wi-Fi Lokal dan Broker MQTT (HiveMQ)

37

Dalam pengujian ini, ESP32 dihubungkan ke jaringan Wi-Fi lokal agar

dapat berkomunikasi secara nirkabel dengan broker MQTT, yaitu broker publik

HiveMQ yang beralamat di broker.hivemq.com, untuk pengujian sebelum tahap

ke project akhir,

Broker MQTT berfungsi sebagai server komunikasi IoT tempat ESP32

mengirim dan menerima pesan melalui topik tertentu.

a) Topik Subscribe: esp32/buzzer — digunakan untuk menerima perintah ON

atau OFF dari pengguna atau aplikasi jarak jauh.

b) Topik Publish: esp32/status — digunakan untuk mengirim status buzzer

(aktif/mati) ke server.

Dengan sistem ini, ESP32 dapat dikontrol secara real-time melalui internet,

sehingga konsep Internet of Things (IoT) benar-benar diterapkan pada

pengujian buzzer low level trigger ini.

4.5.4 Skema Hubungan Fisik Rangkaian

Pada pengujian ini, komponen ESP32 dan buzzer dihubungkan dalam

rangkaian sederhana dengan konfigurasi kabel sebagai berikut ada di tabel

bawah ini.

Tabel 4.5.4 Komponen Buzzer, Terhubung ke ESP32, dan Fungsi

Komponen

Buzzer

Terhubung ke

ESP32

Fungsi

VCC 3.3V Sebagai sumber tegangan utama

untuk mengaktifkan modul buzzer.

GND GND Jalur ground untuk melengkapi

rangkaian arus listrik.

IN (Input Sinyal) GPIO 15 Jalur kontrol sinyal digital dari

ESP32 untuk menyalakan atau

mematikan buzzer.

38

Penjelasan Pemilihan GPIO 15

Pin GPIO 15 dipilih karena merupakan pin output yang aman dan stabil

digunakan untuk aplikasi kontrol digital. Pin ini tidak memengaruhi proses

booting ESP32 dan dapat menghasilkan sinyal logika HIGH/LOW dengan cepat

dan konsisten. Selain itu, GPIO 15 mendukung arus keluaran yang cukup untuk

mengaktifkan buzzer aktif tanpa perlu menggunakan transistor tambahan.

Prinsip Kerja Rangkaian

1. Ketika ESP32 memberikan sinyal LOW (0V) pada pin GPIO 15, maka

buzzer aktif dan menghasilkan bunyi.

2. Ketika sinyal berubah menjadi HIGH (3.3V), buzzer akan mati.

3. Program pada ESP32 mengatur durasi bunyi dan diam dengan fungsi

delay() atau millis().

4. Konfigurasi durasi dapat disimpan di EEPROM dan diubah melalui Serial

Monitor atau perintah jarak jauh lewat MQTT.

4.5.5 Langkah Pengujian

Pengujian dilakukan melalui beberapa skenario program untuk

memastikan bahwa buzzer aktif low bekerja sesuai logika pemicu yang

diinginkan, serta dapat merespons dengan tepat terhadap sinyal digital dari

ESP32 DoIt DevKit V1. Tahap awal dilakukan pengujian dasar untuk

memastikan fungsi utama buzzer, yaitu bekerja pada logika LOW (menyala)

dan berhenti pada logika HIGH (mati).

4.5.6 Pengujian Buzzer 1 Detik ON – 1 Detik OFF

Pada skenario pertama ini, buzzer diuji dengan menyalakan dan

mematikannya secara bergantian setiap 1 detik, menggunakan fungsi

delay() pada mikrokontroler ESP32. Tujuan pengujian ini adalah untuk

memverifikasi respon buzzer terhadap logika HIGH dan LOW serta

memastikan bahwa pin GPIO 15 berfungsi dengan baik sebagai output

kontrol.

39

Kode Program Pengujian Dasar:

Penjelasan Program Pengujian Buzzer Aktif Low

Program ini digunakan untuk mengaktifkan dan menonaktifkan buzzer

secara bergantian dengan interval waktu 1 detik menggunakan fungsi delay().

Buzzer yang digunakan bertipe aktif low (low level trigger), artinya buzzer akan

menyala saat menerima logika LOW (0V) dan mati saat menerima logika HIGH

(3.3V) dari mikrokontroler ESP32.

1. Bagian Inisialisasi Pin

Pada bagian awal program terdapat perintah:

#define BUZZER_PIN 15 // ganti dengan pin yang dipakai

void setup() {

pinMode(BUZZER_PIN, OUTPUT);

digitalWrite(BUZZER_PIN, HIGH); // buzzer mati (karena

low trigger)

}

void loop() {

digitalWrite(BUZZER_PIN, LOW); // buzzer ON

delay(1000); // tunggu 1 detik

digitalWrite(BUZZER_PIN, HIGH); // buzzer OFF

delay(1000); // tunggu 1 detik

}

40

#define BUZZER_PIN 15

Baris ini mendefinisikan pin GPIO 15 sebagai jalur yang digunakan untuk

mengontrol buzzer. Dengan cara ini, pemrograman menjadi lebih mudah

karena nama BUZZER_PIN bisa langsung dipanggil di seluruh program

tanpa perlu menulis angka pin secara berulang. GPIO

15 dipilih karena merupakan pin aman untuk output dan tidak mengganggu

proses booting ESP32.

2. Bagian Setup

Bagian setup() dijalankan satu kali saat perangkat pertama kali

dinyalakan. Perintah pinMode(BUZZER_PIN, OUTPUT); mengatur pin

GPIO 15 menjadi pin keluaran, sehingga ESP32 dapat memberikan sinyal

logika HIGH (3.3V) atau LOW (0V) ke buzzer. Kemudian, perintah

digitalWrite(BUZZER_PIN, HIGH); mengirimkan logika HIGH ke pin

tersebut. Karena buzzer bertipe aktif low, maka logika HIGH akan membuat

buzzer mati atau diam. Tujuannya agar saat ESP32 dinyalakan pertama kali,

buzzer tidak langsung berbunyi.

3. Bagian Loop

Fungsi loop() akan berjalan berulang-ulang tanpa henti selama

perangkat menyala. Pada bagian ini, buzzer dikendalikan secara bergantian

antara kondisi ON dan OFF menggunakan logika digital dan waktu tunda

(delay()).

 digitalWrite(BUZZER_PIN, LOW); memberikan logika LOW (0V) ke

pin, sehingga buzzer menyala (berbunyi).

 delay(1000); memberikan jeda waktu 1 detik (1000 milidetik) sebelum

instruksi berikutnya dijalankan.

 digitalWrite(BUZZER_PIN, HIGH); memberikan logika HIGH

(3.3V) ke pin, sehingga buzzer mati (diam).

 delay(1000); memberi jeda 1 detik lagi sebelum siklus pengulangan

dimulai kembali.

41

Dengan demikian, buzzer akan berbunyi selama 1 detik, lalu diam 1 detik,

secara terus-menerus.

4. Prinsip Kerja Program

Program ini memanfaatkan fungsi delay() untuk mengatur waktu

nyala dan mati buzzer. Meskipun cara ini sederhana dan efektif untuk

pengujian dasar, metode ini bersifat blocking, artinya selama delay()

berjalan, mikrokontroler tidak dapat menjalankan proses lain. Namun, untuk

uji awal seperti memastikan logika kerja buzzer, metode ini sudah cukup

efektif dan mudah dipahami.

Kesimpulan Penjelasan

1) Tujuan program: menguji respon buzzer terhadap sinyal logika HIGH dan

LOW.

2) Hasil: buzzer berbunyi saat logika LOW dan diam saat logika HIGH.

3) Interval kerja: 1 detik bunyi dan 1 detik diam.

4) Pin kontrol: GPIO 15, aman digunakan pada ESP32.

5) Metode waktu: menggunakan fungsi delay() dengan nilai 1000 milidetik.

4.5.7 Pengujian Buzzer Menyala Setiap 10 Detik Sekali

1. Tujuan Pengujian

Tujuan dari pengujian ini adalah untuk memastikan buzzer aktif low

dapat diatur menyala secara periodik dengan interval waktu tertentu, yaitu

berbunyi selama 0,5 detik setiap 10 detik sekali. Pengujian ini juga berfungsi

untuk menguji akurasi fungsi waktu delay() dalam menghasilkan periode

kerja yang stabil, serta memverifikasi kestabilan logika digital dari pin

GPIO 15 pada ESP32 sebagai pin kendali buzzer.

2. Kode Program Pengujian

#define BUZZER_PIN 15 // pin buzzer

void setup() {

42

3. Penjelasan Program

i. Inisialisasi Pin

#define BUZZER_PIN 15

Mendefinisikan pin GPIO 15 sebagai jalur kontrol buzzer. Jika

posisi pin buzzer diubah, pengguna cukup mengganti angka ini tanpa perlu

mengubah logika program.

pinMode(BUZZER_PIN, OUTPUT);

}

// Tunggu 9.5 detik agar total siklus = 10 detik

delay(9500);

digitalWrite(BUZZER_PIN, HIGH); // buzzer OFF

Matikan buzzer //

// 500 ms = 0.5 delay(500);

detik

}

void loop() {

digitalWrite(BUZZER_PIN, LOW); // buzzer ON

// buzzer OFF HIGH); digitalWrite(BUZZER_PIN,

(karena low trigger)

pinMode(BUZZER_PIN, OUTPUT);

43

Mengatur pin GPIO 15 sebagai output, agar ESP32 dapat memberikan sinyal digital

HIGH/LOW ke modul buzzer.

digitalWrite(BUZZER_PIN, HIGH);

Memberikan logika HIGH (3.3V) ke pin buzzer sehingga buzzer dalam kondisi

mati, karena modul buzzer ini bertipe low level trigger.

 Karakteristik modul buzzer aktif low:

a) LOW (0V) → Buzzer menyala (berbunyi).

b) HIGH (3.3V) → Buzzer mati (diam).

ii. Logika Kerja Utama (Loop Program)

a) digitalWrite(BUZZER_PIN, LOW);

Mengirim sinyal LOW ke buzzer → buzzer hidup.

b) delay(500);

Memberikan jeda waktu 500 milidetik (0,5 detik) saat buzzer menyala.

c) digitalWrite(BUZZER_PIN, HIGH);

Mengirim sinyal HIGH → buzzer mati.

d) delay(9500);

Memberikan jeda waktu 9,5 detik sebelum siklus diulang.

Dengan pengaturan waktu di atas, total satu siklus kerja buzzer menjadi 10 detik:

1) Bunyi 0,5 detik,

2) Diam 9,5 detik,

3) Lalu berulang secara terus-menerus.

44

iii. Analisis Waktu dan Sinyal

1) Periode Siklus (T)

Periode merupakan waktu yang dibutuhkan untuk satu kali siklus lengkap,

yaitu saat buzzer menyala (aktif) dan mati (diam).

Rumus periode dinyatakan sebagai:

𝑇 = 𝑡𝑏𝑢𝑛𝑦𝑖 + 𝑡𝑑𝑖𝑎𝑚

Dengan:

 𝑡𝑏𝑢𝑛𝑦𝑖=0,5 detik

 𝑡𝑑𝑖𝑎𝑚=9,5 detik

Maka:

𝑇 = 0, 5 + 9, 5 = 10 detik

Artinya, buzzer berbunyi setiap 10 detik sekali dalam satu siklus penuh.

Menurut Zenius (2021), periode merupakan waktu yang dibutuhkan suatu

getaran atau gelombang untuk menyelesaikan satu siklus penuh sebelum

kembali ke posisi semula.

2) Frekuensi (f)

Hubungan antara frekuensi dan periode mengikuti persamaan dasar fisika

gelombang:

1
𝑓 =

𝑇

Dengan T=10 detik, diperoleh:

f= 1
10

= 0,1 Hz

Artinya, buzzer berbunyi 0,1 kali per detik, atau 1 kali setiap 10 detik. Sejalan

dengan penjelasan Zenius (2021), frekuensi menunjukkan jumlah getaran atau

siklus yang terjadi setiap satu detik, dan satuannya adalah Hertz (Hz).

45

3) Duty Cycle (D)

Duty cycle menunjukkan persentase waktu aktif (bunyi) dibandingkan waktu total

siklus.

Rumusnya:

𝐷 =
𝑡𝑏𝑢𝑛𝑦𝑖

𝑇
× 100%

Dengan nilai:

𝐷 =
0, 5

10
× 100%

Artinya, buzzer hanya aktif selama 5% dari total waktu siklus, dan 95%

sisanya dalam keadaan mati. Duty cycle ini penting untuk mengatur

efisiensi energi serta durasi notifikasi bunyi agar tidak terlalu lama.

 Pola Kerja Sinyal Buzzer

Berdasarkan hasil pengujian program:

a) ⟁ Bunyi selama 0,5 detik (logika LOW)

b) Diam selama 9,5 detik (logika HIGH)

c) a Ulang terus menerus setiap 10 detik

Pola tersebut menunjukkan bahwa program telah bekerja sesuai dengan

konsep sinyal periodik dan perhitungan waktu yang telah dirumuskan.

46

4.5.8 Pengujian Buzzer Bunyi Setiap 1 Menit Selama 5 Detik

Kode Program :

 Penjelasan Program

1) Definisi Pin

#define BUZZER_PIN 15

Baris ini mendefinisikan pin GPIO 15 sebagai jalur kontrol buzzer. Jika

pin diganti, cukup ubah angka 15 sesuai dengan pin yang digunakan pada ESP32.

Pin ini dipilih karena termasuk pin output aman yang tidak mengganggu proses

booting mikrokontroler.

2) Variabel Konfigurasi

#define BUZZER_PIN 15 // pin buzzer (low trigger)

// Variabel konfigurasi (bisa diubah sesuai kebutuhan)
unsigned long tBunyi = 5000;
contoh: 5 detik = 5000
unsigned long tPeriod = 60000;
> contoh: 1 menit = 60000

// lama bunyi (ms) ->

// periode total (ms) -

void setup() {
pinMode(BUZZER_PIN, OUTPUT);
digitalWrite(BUZZER_PIN, HIGH); // buzzer mati saat

mulai (active-low)
}

void loop() {
// Buzzer ON
digitalWrite(BUZZER_PIN, LOW);
delay(tBunyi); // tunggu selama bunyi

// Buzzer OFF
digitalWrite(BUZZER_PIN, HIGH);
delay(tPeriod - tBunyi); // tunggu sisa waktu

agar total = tPeriod
}

47

unsigned long tBunyi = 5000; // lama bunyi (ms)

unsigned long tPeriod = 60000; // periode total (ms)

 𝑡𝐵𝑢𝑛𝑦𝑖 = lama buzzer menyala dalam milidetik (5000 ms = 5 detik).

 𝑡𝑃𝑒𝑟𝑖𝑜𝑑 = periode total antar bunyi (60000 ms = 1 menit).

Waktu buzzer dalam keadaan diam (mati) dihitung dengan rumus:

𝑡𝑑𝑖𝑎𝑚 = 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 − 𝑡𝑏𝑢𝑛𝑦𝑖

3) Bagian Setup

pinMode(BUZZER_PIN, OUTPUT);

digitalWrite(BUZZER_PIN, HIGH);

 pinMode(BUZZER_PIN, OUTPUT) → mengatur GPIO 15 menjadi output

digital.

 digitalWrite(BUZZER_PIN, HIGH) → mengirim logika HIGH (3.3V)

agar buzzer mati saat awal.

 Karena buzzer bertipe active-low, maka:

a) LOW (0V) → Buzzer hidup (berbunyi).

b) HIGH (3.3V) → Buzzer mati (diam).

4) Bagian Loop

digitalWrite(BUZZER_PIN, LOW); // buzzer ON

delay(tBunyi); // tunggu selama bunyi

digitalWrite(BUZZER_PIN, HIGH); // buzzer OFF

delay(tPeriod - tBunyi); // tunggu sisa waktu

 Saat logika LOW diberikan, buzzer aktif (berbunyi) selama 𝑡𝐵𝑢𝑛𝑦𝑖 milidetik.

 Setelah itu, buzzer dimatikan dengan logika HIGH, lalu menunggu sisa waktu

(tPeriod - tBunyi) agar total waktu per siklus tetap 1 menit.

5) Perhitungan dan Analisis

Misalnya:

 𝑡𝑏𝑢𝑛𝑦𝑖=5000ms=5detik

48

 𝑡𝑝𝑒𝑟𝑖𝑜𝑑=60000ms=60detik=1menit

 Maka:

𝑡𝑑𝑖𝑎𝑚 = 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 − 𝑡𝑏𝑢𝑛𝑦𝑖 = 60000 − 5000 = 55000 𝑚𝑠 = 55 𝑑𝑒𝑡𝑖𝑘

 Artinya:

a) Buzzer ON selama 5 detik.

b) Buzzer OFF selama 55 detik.

c) Pola berulang setiap 1 menit.

Hubungan antara frekuensi (f) dan periode (T) mengikuti persamaan:

(Zenius, 2021)

Dengan 𝑇 = 60 𝑑𝑒𝑡𝑖𝑘, maka:

1
𝑓 =

𝑇

1

𝑓 =
60

= 0, 0167𝐻𝑧

Frekuensi ini berarti buzzer menyala sekali setiap 60 detik.

Menurut teori gelombang periodik (Zenius, 2021), semakin besar nilai periode,

maka frekuensi bunyi menjadi semakin kecil.

 Pola Kerja Sistem

a) ⟁ Buzzer berbunyi selama 5 detik.

b) Buzzer diam selama 55 detik.

c) a Pola ini diulang terus-menerus setiap 1 menit.

Dengan logika ini, sistem menghasilkan sinyal periodik yang stabil dan presisi,

sesuai teori dasar hubungan antara periode dan frekuensi.

49

4.5.9 Kodingan Buzzer Bunyi Menggunakan Millis()

Kode Program:

if (buzzerState) {

// Kalau buzzer sedang ON

if (elapsed >= tBunyi) {

digitalWrite(BUZZER_PIN, HIGH); // matikan buzzer

buzzerState = false;

void loop() {

unsigned long currentMillis = millis();

unsigned long elapsed = currentMillis - prevMillis;

void setup() {

pinMode(BUZZER_PIN, OUTPUT);

digitalWrite(BUZZER_PIN, HIGH); // buzzer OFF saat mulai

(active-low)

}

// kondisi buzzer (ON/OFF) bool buzzerState = false;

// waktu terakhir buzzer ON/OFF

// Variabel internal

unsigned long prevMillis = 0;

// periode total (ms) -> 1 unsigned long tPeriod = 60000;
menit = 60000

// lama bunyi (ms) -> 5 detik = unsigned long tBunyi = 5000;
5000

// Variabel konfigurasi (bisa diubah sesuai kebutuhan)

#define BUZZER_PIN 15 // pin buzzer (low trigger)

50

 Penjelasan Program

1) Definisi Pin

#define BUZZER_PIN 15

Menetapkan buzzer pada pin GPIO 15. Penggunaan #define membuat kode

lebih fleksibel — jika pin diganti, cukup ubah angka tanpa memodifikasi bagian

lain program. Pin GPIO 15 dipilih karena aman digunakan sebagai output digital

pada ESP32 tanpa mengganggu proses booting.

2) Variabel Konfigurasi

unsigned long tBunyi = 5000;

unsigned long tPeriod = 60000;

 𝑡𝐵𝑢𝑛𝑦𝑖 = durasi buzzer hidup dalam milidetik (5000 ms = 5 detik).

 𝑡𝑃𝑒𝑟𝑖𝑜𝑑 = waktu total satu siklus (60000 ms = 1 menit).

Waktu buzzer dalam keadaan mati (diam) dihitung menggunakan rumus:

𝑡𝑑𝑖𝑎𝑚 = 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 − 𝑡𝑏𝑢𝑛𝑦𝑖

(Sumber: Zenius, 2021)

prevMillis = currentMillis; // reset timer

}

} else {

// Kalau buzzer sedang OFF

if (elapsed >= (tPeriod - tBunyi)) {

digitalWrite(BUZZER_PIN, LOW); // hidupkan buzzer

buzzerState = true;

prevMillis = currentMillis; // reset timer

}

}

}

51

Dengan nilai tersebut:

𝑡𝑑𝑖𝑎𝑚 = 60000 − 5000 = 55000𝑚𝑠 = 55𝑑𝑒𝑡𝑖𝑘

Artinya buzzer akan ON selama 5 detik dan OFF selama 55 detik, berulang setiap

1 menit.

3) Variabel Internal

unsigned long prevMillis = 0;

bool buzzerState = false;

a) prevMillis → menyimpan waktu terakhir perubahan status buzzer.

b) buzzerState . menandakan kondisi buzzer saat ini (true = ON, false

= OFF).

4) Setup Awal

void setup() {

pinMode(BUZZER_PIN, OUTPUT);

digitalWrite(BUZZER_PIN, HIGH);

}

 pinMode() mengatur pin buzzer sebagai output.

 digitalWrite(HIGH) memastikan buzzer mati saat awal.

Karena buzzer bertipe active-low, maka:

a) LOW (0V) → buzzer menyala (berbunyi).

b) HIGH (3.3V) → buzzer mati (diam).

5) Loop Utama

Program utama tidak menggunakan delay() melainkan fungsi

millis(), sehingga sistem tetap responsif terhadap proses lain seperti

komunikasi sensor atau Wi-Fi.

Logika Program:

a) Menghitung waktu yang telah berlalu (elapsed) sejak perubahan status

terakhir.

b) Jika buzzer ON selama ≥ 𝑡𝐵𝑢𝑛𝑦𝑖, maka buzzer dimatikan.

52

c) Jika buzzer OFF selama ≥ (𝑡𝑃𝑒𝑟𝑖𝑜𝑑 − 𝑡𝐵𝑢𝑛𝑦𝑖), maka buzzer dinyalakan

kembali.

Dengan demikian, satu siklus total tetap 1 menit, tetapi tanpa menghentikan

program utama.

 Alur Kerja Sistem

i. Buzzer awalnya mati (OFF).

ii. Setelah 55 detik, buzzer menyala (ON) selama 5 detik.

iii. Setelah itu, buzzer mati kembali dan siklus diulang terus menerus.

iv. Seluruh waktu dihitung menggunakan millis() secara non-blocking.

 Keunggulan Penggunaan millis()

a) Non-blocking: ESP32 tetap bisa menjalankan tugas lain sambil menunggu

waktu.

b) Lebih efisien: Tidak menghentikan seluruh sistem seperti delay().

c) Profesional: Digunakan dalam sistem nyata seperti IoT dan kontrol

industri.

Menurut teori fisika tentang periode dan frekuensi (Zenius, 2021), hubungan

antara waktu aktif dan waktu total mengikuti:

1
𝑓 =

𝑇

Dengan 𝑇 = 60𝑑𝑒𝑡𝑖𝑘, maka frekuensi sinyal buzzer:

𝑓 = 0, 0167𝐻𝑧

yang berarti 1 kali bunyi setiap 60 detik.

 Analisis Waktu dan Duty Cycle

Dari hasil pengujian:

 𝑡𝑏𝑢𝑛𝑦𝑖 = 5𝑑𝑒𝑡𝑖𝑘

 𝑡𝑑𝑖𝑎𝑚 = 55𝑑𝑒𝑡𝑖𝑘

 𝑇 = 60𝑑𝑒𝑡𝑖𝑘

Duty cycle dihitung sebagai:

𝑡𝑏𝑢𝑛𝑦𝑖 5
𝐷 =

𝑇
× 100% =

60
× 100% = 8, 33%

53

Artinya buzzer hanya aktif 8,33% dari waktu total siklus. Perhitungan ini sesuai

dengan prinsip periode dan frekuensi gelombang periodik sebagaimana dijelaskan

dalam Zenius (2021) bahwa semakin besar periode sinyal, maka frekuensi

bunyinya semakin kecil.

 Kesimpulan Pengujian

Program ini berhasil membuat buzzer menyala 5 detik setiap 1 menit sekali

menggunakan metode non-blocking berbasis millis(). Seluruh logika waktu

bekerja stabil dengan siklus tetap 60 detik tanpa gangguan terhadap fungsi

mikrokontroler lainnya.

4.5.10 Pengujian Buzzer Menggunakan EEPROM

A. Kodingan EEPROM pada buzzer Low level trigger :

#include <EEPROM.h>

#define BUZZER_PIN 15 // pin buzzer (LOW trigger)

#define EEPROM_SIZE 512 // ukuran EEPROM (wajib di-

EEPROM.begin())

int addr = 0; // alamat EEPROM untuk simpan

durasi

unsigned long durasi; // variabel durasi buzzer (ms)

void setup() {

Serial.begin(115200);

54

pinMode(BUZZER_PIN, OUTPUT);

// Inisialisasi EEPROM

if (!EEPROM.begin(EEPROM_SIZE)) {

Serial.println("Gagal inisialisasi EEPROM!");

while (1);

}

// --- Membaca data lama dari EEPROM ---

EEPROM.get(addr, durasi);

// Jika masih kosong (belum pernah disimpan), set

default

if (durasi == 0xFFFFFFFF || durasi == 0) {

durasi = 1000; // default 1 detik (1000 ms)

EEPROM.put(addr, durasi);

EEPROM.commit();

}

Serial.print("Durasi dari EEPROM: ");

Serial.println(durasi);

}

55

void loop() {

// Bunyi buzzer pakai durasi yang dibaca dari

EEPROM

digitalWrite(BUZZER_PIN, LOW); // aktif (karena

low trigger)

delay(durasi);

digitalWrite(BUZZER_PIN, HIGH); // mati

delay(500); // jeda setengah detik

// --- Update durasi via Serial Monitor ---

if (Serial.available()) {

String input = Serial.readStringUntil('\n');

unsigned long durasiBaru = input.toInt();

if (durasiBaru > 0) {

durasi = durasiBaru;

EEPROM.put(addr, durasi);

EEPROM.commit();

Serial.print("Durasi baru tersimpan: ");

Serial.println(durasi);

}

}

}

56

 Penjelasan Program

Program ini bertujuan untuk mengontrol durasi bunyi buzzer menggunakan

EEPROM, sehingga nilai durasi dapat disimpan secara permanen di dalam

memori mikrokontroler dan tetap tersedia meskipun daya dimatikan.

A. Inisialisasi Awal

Bagian awal program memanggil pustaka EEPROM dan mendefinisikan

parameter dasar:

i. #include <EEPROM.h> → mengaktifkan fungsi baca-tulis pada memori

EEPROM internal ESP32.

ii. #define BUZZER_PIN 15 . menetapkan GPIO 15 sebagai pin output buzzer

bertipe low-level trigger, artinya buzzer menyala saat logika bernilai LOW.

iii. #define EEPROM_SIZE 512 . menentukan ukuran memori EEPROM yang

akan digunakan (512 byte).

iv. int addr = 0 . menentukan alamat awal penyimpanan data durasi.

v. unsigned long durasi . menyimpan nilai durasi bunyi buzzer dalam

satuan milidetik.

Fungsi EEPROM.begin(EEPROM_SIZE) wajib dipanggil agar ESP32 dapat

mengakses memori EEPROM-nya.

B. Penetapan Nilai Default Durasi

Saat pertama kali program dijalankan, sistem akan mencoba membaca data

yang sebelumnya tersimpan di EEPROM menggunakan:

EEPROM.get(addr, durasi);

ketika data belum pernah disimpan (hasilnya kosong atau 0), maka nilai default

durasi = 1000 ms (1 detik) akan ditetapkan dan disimpan kembali menggunakan:

EEPROM.put(addr, durasi);

EEPROM.commit();

Perintah EEPROM.commit() sangat penting karena memastikan data benar-

benar tertulis ke memori flash ESP32.

57

C. Membaca Data dari EEPROM

Nilai durasi yang tersimpan di EEPROM akan ditampilkan melalui Serial

Monitor, dengan pesan seperti:

Durasi dari EEPROM: 1000

Dan Pada gambar berikut dibawah ini

Gambar 4.5.5.5 Output Durasi EEPROM

Pada Gambar ini menandakan bahwa sistem berhasil membaca nilai durasi dari

memori non-volatile.

D. Bagian Loop (Logika Utama)

Bagian loop() menjalankan dua fungsi utama:

1. Mengaktifkan buzzer berdasarkan durasi tersimpan.

i. digitalWrite(BUZZER_PIN, LOW) → buzzer ON (karena low

trigger).

ii. delay(durasi) → menunggu selama nilai durasi aktif (misal 1000

ms).

iii. digitalWrite(BUZZER_PIN, HIGH) → buzzer OFF.

iv. delay(500) → jeda 0,5 detik sebelum siklus berikutnya.

2. Memperbarui durasi melalui Serial Monitor.

Jika pengguna mengetik angka baru (misal 3000) di Serial Monitor, maka:

i. Nilai durasi akan diperbarui menjadi 3000 ms.

ii. Data baru disimpan ke EEPROM dengan EEPROM.put() dan

EEPROM.commit().

iii. Serial Monitor akan menampilkan:

Durasi baru tersimpan: 3000

Dengan demikian, setiap kali ESP32 dihidupkan ulang, durasi terakhir yang

disimpan tetap digunakan tanpa harus diatur ulang.

58

 Alur Kerja Sistem

1. Sistem membaca nilai durasi dari EEPROM.

2. Jika belum ada data, sistem menetapkan nilai default (1 detik).

3. Buzzer menyala sesuai durasi yang tersimpan.

4. Pengguna dapat mengirim nilai baru melalui Serial Monitor untuk

memperbarui durasi.

5. Nilai baru otomatis disimpan ke EEPROM dan digunakan pada siklus

berikutnya.

 Analisis Teknis

Penggunaan EEPROM pada ESP32 memungkinkan sistem menyimpan

konfigurasi secara permanen, yang sangat penting pada aplikasi IoT atau sistem

tertanam (embedded system).

Dibandingkan metode hardcode biasa, pendekatan ini:

i. Lebih fleksibel, karena parameter dapat diubah tanpa memodifikasi program.

ii. Non-volatile, artinya data tidak hilang saat perangkat dimatikan.

iii. Efisien untuk kalibrasi perangkat dan pengaturan waktu otomatis.

Hubungan antara durasi buzzer dan periode sinyal tetap mengacu pada prinsip

dasar frekuensi dalam fisika:

1
𝑓 =

𝑇

Zenius, (2021)

Semakin panjang nilai durasi yang disimpan, semakin rendah frekuensi bunyi

buzzer yang dihasilkan.

 Kesimpulan Pengujian

Pengujian buzzer menggunakan EEPROM menunjukkan hasil sebagai berikut:

1. Sistem berhasil membaca dan menulis data durasi ke memori non-volatile.

2. Nilai durasi tetap tersimpan walaupun perangkat di reset atau dimatikan.

59

3. Pengguna dapat mengubah durasi dengan mudah melalui Serial Monitor

tanpa perlu memprogram ulang mikrokontroler.

4. Fungsi EEPROM.put() dan EEPROM.commit() bekerja dengan stabil,

memastikan data tersimpan permanen.

Dengan demikian, integrasi EEPROM pada sistem buzzer ini terbukti efektif

untuk penyimpanan konfigurasi jangka panjang dalam aplikasi kontrol IoT

berbasis ESP32.

C. Pengujian EEPROM untuk setting Buzzer ON/OFF

1) Deskripsi Program

Program ini dirancang untuk mengontrol pola bunyi buzzer menggunakan

metode non-blocking timer (millis()) dan menyimpan konfigurasi durasi ON

dan OFF ke dalam EEPROM agar pengaturan tetap tersimpan meskipun

perangkat dimatikan. Dengan demikian, pengguna dapat mengubah pola bunyi

buzzer melalui Serial Monitor dan sistem akan menyimpan pengaturan terakhir

secara otomatis ke dalam memori permanen.

Fitur utama dari program ini meliputi:

1. Pengaturan pola bunyi buzzer berdasarkan tiga mode (‘a', ‘b', dan ‘c').

2. Penggunaan EEPROM untuk menyimpan durasi ON/OFF secara permanen.

3. Penggunaan millis() sebagai sistem waktu non-blocking agar program tidak

terganggu oleh fungsi delay().

4. Komunikasi interaktif dengan pengguna melalui Serial Monitor.

2) Kodingan Program

60

#include <EEPROM.h>

#define BUZZER_PIN 15

#define EEPROM_SIZE 512

EEPROM.begin())

#define ADDR_DURASI_ON 0

ON

#define ADDR_DURASI_OFF 4

OFF

// Pin buzzer (LOW trigger)

// Ukuran EEPROM (wajib di-

// Alamat EEPROM untuk durasi

// Alamat EEPROM untuk durasi

unsigned long durasiOn;

unsigned long durasiOff;

ms

// Durasi ON buzzer dalam ms

// Durasi OFF buzzer dalam

unsigned long waktuSebelumnya = 0; // Untuk menyimpan

waktu terakhir

bool isBuzzerOn = false;

OFF)

// Status buzzer (ON atau

void setup() {

Serial.begin(115200);

pinMode(BUZZER_PIN, OUTPUT);

// Pastikan buzzer mati saat startup (karena low

trigger)

digitalWrite(BUZZER_PIN, HIGH);

// Inisialisasi EEPROM

if (!EEPROM.begin(EEPROM_SIZE)) {

Serial.println("Gagal inisialisasi EEPROM!");

while (1);

}

61

// Membaca data lama dari EEPROM

EEPROM.get(ADDR_DURASI_ON, durasiOn);

EEPROM.get(ADDR_DURASI_OFF, durasiOff);

// Jika belum ada data, set nilai default ke pola 'a'

if (durasiOn == 0xFFFFFFFF || durasiOn == 0) {

durasiOn = 1000;

}

if (durasiOff == 0xFFFFFFFF || durasiOff == 0) {

durasiOff = 1000;

}

// Menyimpan nilai default ke EEPROM jika belum ada

EEPROM.put(ADDR_DURASI_ON, durasiOn);

EEPROM.put(ADDR_DURASI_OFF, durasiOff);

EEPROM.commit();

Serial.println("=====================================");

Serial.println("Konfigurasi Buzzer dari EEPROM:");

Serial.print("Durasi ON: ");

Serial.print(durasiOn);

Serial.println(" ms");

Serial.print("Durasi OFF: ");

Serial.print(durasiOff);

Serial.println(" ms");

Serial.println("=====================================");

Serial.println("Masukkan

mengubah pola:");

'a', 'b', atau 'c' untuk

Serial.println("- 'a': ON 1000 ms, OFF 1000 ms");

62

// Periksa input 'a', 'b', atau 'c'

if (input == 'a' || input == 'b' || input == 'c') {

// Membaca input dari Serial Monitor

if (Serial.available()) {

char input = Serial.read();

ON (LOW // Buzzer

waktuSebelumnya >= durasiOff) {

digitalWrite(BUZZER_PIN, LOW);

trigger)

isBuzzerOn = true;

waktuSebelumnya = waktuSekarang;

}

- waktuSekarang && (!isBuzzerOn if else }

// Kontrol buzzer menggunakan millis()

if (isBuzzerOn && waktuSekarang - waktuSebelumnya >=

durasiOn) {

digitalWrite(BUZZER_PIN, HIGH); // Buzzer OFF (LOW

trigger)

isBuzzerOn = false;

waktuSebelumnya = waktuSekarang;

void loop() {

unsigned long waktuSekarang = millis();

Serial.println("=====================================");

}

Serial.println("- 'b': ON 2000 ms, OFF 1000 ms");

Serial.println("- 'c': ON 1000 ms, OFF 2000 ms");

63

// Atur durasi ON dan OFF berdasarkan pilihan

if (input == 'a') {

durasiOn = 1000;

durasiOff = 1000;

} else if (input == 'b') {

durasiOn = 2000;

durasiOff = 1000;

} else if (input == 'c') {

durasiOn = 1000;

durasiOff = 2000;

}

// Simpan durasi baru ke EEPROM

EEPROM.put(ADDR_DURASI_ON, durasiOn);

EEPROM.put(ADDR_DURASI_OFF, durasiOff);

EEPROM.commit();

Serial.println("\n

");

Serial.print("Konfigurasi baru tersimpan: ");

Serial.print("Pola '");

Serial.print(input);

Serial.println("'");

Serial.print("Durasi ON: ");

Serial.print(durasiOn);

Serial.println(" ms");

Serial.print("Durasi OFF: ");

Serial.print(durasiOff);

Serial.println(" ms");

Serial.println("

---");

64

3) Penjelasan Program

Kode di atas menggunakan EEPROM sebagai penyimpanan nilai durasi ON dan

OFF buzzer secara permanen, sehingga ketika sistem dimatikan dan dihidupkan

kembali, konfigurasi terakhir tetap tersimpan.

A. Bagian Deklarasi dan Setup

i. #include <EEPROM.h> digunakan untuk mengakses fungsi baca/tulis

memori EEPROM.

ii. Pin buzzer didefinisikan pada pin 15, dengan logika LOW trigger (aktif

ketika LOW).

iii. EEPROM memiliki dua alamat memori: ADDR_DURASI_ON untuk

menyimpan waktu ON dan ADDR_DURASI_OFF untuk waktu OFF.

iv. Nilai default (1000 ms) akan ditetapkan jika EEPROM belum pernah diisi

sebelumnya.

B. Bagian Loop (Logika Utama)

i. Program menggunakan fungsi millis() untuk mengukur waktu berjalan

tanpa menghentikan proses lain (non-blocking).

} else {

Serial.println("\nInput tidak valid. Masukkan 'a',

'b', atau 'c'.");

}

}

}

65

ii. Jika buzzer menyala melebihi durasi ON, maka akan dimatikan. Sebaliknya,

jika buzzer mati melebihi durasi OFF, maka akan dinyalakan.

iii. Status ON/OFF buzzer disimpan dalam variabel isBuzzerOn.

C. Input dari Serial Monitor

i. Pengguna dapat memasukkan huruf 'a', 'b', atau 'c' untuk mengubah pola:

1. 'a': ON 1000 ms, OFF 1000 ms

2. 'b': ON 2000 ms, OFF 1000 ms

3. 'c': ON 1000 ms, OFF 2000 ms

ii. Setiap kali pola diubah, nilai baru disimpan ke EEPROM agar tetap

tersimpan meski perangkat dimatikan.

4) Hasil dan Tampilan Output

Berikut tampilan hasil output pada Serial Monitor saat program dijalankan:

Gambar 4.5.5.5 Output Konfigurasi Buzzer Dari EEPROM

Jika ingin memasukkan ‘a','b','c' untuk mengubah pola maka bisa dilihat pada

gambar di bawah ini:

Gambar 4.5.5.5 Output masukkan ‘a','b','c' untuk mengubah pola

Saat pengguna mengetik huruf a','b','c' ‘pada Serial Monitor, maka output

berubah menjadi:

Gambar 4.5.5.5 Output Konfigurasi baru tersimpan pada Pola ‘a'

66

Gambar 4.5.5.5 Output Konfigurasi baru tersimpan pada Pola ‘b'

Gambar 4.5.5.5 Output Konfigurasi baru tersimpan pada Pola ‘c'

Buzzer kemudian berbunyi mengikuti pola tersebut, dan konfigurasi tersimpan

otomatis di EEPROM.

5) Kesimpulan

Dari implementasi program ini dapat disimpulkan bahwa:

a. EEPROM berfungsi dengan baik sebagai penyimpan data permanen pada

ESP32.

b. Penggunaan millis() berhasil membuat sistem bekerja tanpa delay blocking.

c. Pengguna dapat dengan mudah mengubah pola kerja buzzer melalui Serial

Monitor, dan sistem menyimpannya secara otomatis.

d. Program ini efisien, responsif, dan cocok diterapkan untuk aplikasi peringatan

suara otomatis atau sistem notifikasi berbasis IoT.

67

4.5.11 Pengujian Buzzer Menggunakan Koneksi WIFI

A. Tujuan Pengujian

Tujuan dari pengujian ini adalah untuk memastikan bahwa buzzer dapat

berfungsi secara non-blocking (tanpa delay) saat memantau koneksi WiFi pada

modul ESP32. Dengan cara ini, buzzer tetap dapat berfungsi selama proses

pengecekan atau penyambungan ulang WiFi.

B. Alat dan Bahan

1. ESP32 DevKit V1

2. Buzzer aktif (Low Trigger)

3. Kabel jumper

4. Jaringan WiFi HOSTPOT melalui HP saya dengan SSID "Alan" dan password

"alan12378"

5. Software Arduino IDE

C. Langkah Pengujian

1. Hubungkan pin buzzer ke GPIO 15 ESP32.

2. Upload program berikut ke ESP32:

#include <WiFi.h>

#define BUZZER_PIN 15

trigger)

// pin buzzer (low

const char* ssid = "Alan";

const char* password = "alan12378";

unsigned long buzzerOn = 1000;

unsigned long buzzerOff = 1000;

unsigned long prevBuzzerMillis = 0;

bool buzzerState = false;

unsigned long prevWiFiMillis = 0;

68

prevWiFiMillis = currentMillis;

if (WiFi.status() != WL_CONNECTED) {

{

// ====== WiFi Reconnect Non-blocking ======

if (currentMillis - prevWiFiMillis >= intervalWiFi)

prevBuzzerMillis >= buzzerOn) {

buzzerState = false;

prevBuzzerMillis = currentMillis;

digitalWrite(BUZZER_PIN, HIGH); // buzzer OFF

}

- currentMillis && (buzzerState if

}

else

prevBuzzerMillis >= buzzerOff) {

buzzerState = true;

prevBuzzerMillis = currentMillis;

digitalWrite(BUZZER_PIN, LOW); // buzzer ON

- currentMillis && (!buzzerState if

// ====== BUZZER Non-blocking ======

void loop() {

unsigned long currentMillis = millis();

void setup() {

Serial.begin(115200);

pinMode(BUZZER_PIN, OUTPUT);

digitalWrite(BUZZER_PIN, HIGH); // buzzer OFF (low

trigger)

}

unsigned long intervalWiFi = 5000;

69

3. Buka Serial Monitor untuk memantau status koneksi WiFi.

4. Amati bunyi buzzer yang menyala dan mati secara bergantian setiap 1 detik.

5. Putuskan koneksi WiFi untuk menguji fungsi reconnect otomatis.

Hasil outputnya Bisa dilihat di bawah ini:

Gambar 4.5.5.6 Hasil output Koneksi WIFI

5. Kesimpulan

Berdasarkan hasil pengujian, sistem buzzer bekerja secara independen dari

koneksi WiFi. Fungsi non-blocking menggunakan millis() terbukti efektif,

karena ESP32 dapat melakukan dua proses paralel:

i. Mengontrol buzzer menyala dan mati secara teratur.

ii. Memeriksa serta menyambungkan ulang WiFi setiap 5 detik.

Dengan demikian, sistem ini stabil dan efisien untuk digunakan dalam proyek IoT

berbasis WiFi.

Serial.println("WiFi

koneksi...");

WiFi.disconnect();

terputus, mencoba

WiFi.begin(ssid, password);

}

else {

Serial.println("WiFi masih terhubung Д");

}

}

}

70

4.5.12 Pengujian Buzzer Menggunakan Koneksi MQTT

A. Tujuan Pengujian

Tujuan dari pengujian ini adalah untuk memastikan bahwa sistem dapat

melakukan pengendalian buzzer secara non-blocking dan menjaga koneksi WiFi

dan MQTT secara otomatis. Selain itu, pengujian ini memastikan bahwa broker

publik HiveMQ memiliki kemampuan untuk mengendalikan buzzer dari jarak jauh

melalui protokol MQTT.

B. Alat dan Bahan

i. ESP32 DevKit V1

ii. Buzzer aktif (low trigger)

iii. kabel jumper (female to female)

iv. Koneksi internet WiFi di rumah saya (SSID: samudra43, Password:

TNIAL.25.)

v. Software Arduino IDE

vi. MQTT Dashboard (IoT MQTT Panel di Android)

A. Langkah Pengujian

i. Hubungkan buzzer aktif ke pin GPIO 15 pada ESP32.

ii. Upload program berikut ke board ESP32:

#include <WiFi.h>
#include <PubSubClient.h>

// --- Konfigurasi WiFi ---
const char* ssid = "samudra43";
const char* password = "TNIAL.25.";

// --- Konfigurasi MQTT (HiveMQ Public Broker) ---
const char* mqtt_server = "broker.hivemq.com";

const int mqtt_port = 1883;
const char* topic_sub = "esp32/buzzer"; // Topic subscribe
const char* topic_pub = "esp32/status"; // Topic publish

#define BUZZER_PIN 15 // Pin buzzer (low trigger)

WiFiClient espClient;
PubSubClient client(espClient);

// --- Variabel kontrol buzzer ---
bool buzzerActive = false;

71

unsigned long previousMillis = 0;
const unsigned long buzzerOnTime = 500; // 0.5 detik ON
const unsigned long buzzerOffTime = 9500; // 9.5 detik OFF
bool buzzerState = false; // LOW = aktif, HIGH = mati

// --- Variabel pengecekan koneksi ---
unsigned long lastCheckMillis = 0;
const unsigned long checkInterval = 30000; // 30 detik

// MQTT CALLBACK
void callback(char* topic, byte* message, unsigned int length) {
String msg;
for (int i = 0; i < length; i++) {
msg += (char)message[i];

}
Serial.print("Pesan diterima [");
Serial.print(topic);
Serial.print("] ");
Serial.println(msg);

if (msg == "ON") {
buzzerActive = true;
buzzerState = false; // mulai dari buzzer mati
previousMillis = millis();
client.publish(topic_pub, "Buzzer ON");

} else if (msg == "OFF") {
buzzerActive = false;
digitalWrite(BUZZER_PIN, HIGH); // pastikan buzzer mati
client.publish(topic_pub, "Buzzer OFF");

}
}

// WIFI CONNECT
void connectWiFi() {
if (WiFi.status() != WL_CONNECTED) {
Serial.print("Menghubungkan ke WiFi ");
Serial.println(ssid);
WiFi.begin(ssid, password);

}
}

// MQTT RECONNECT
void connectMQTT() {
if (!client.connected() && WiFi.status() == WL_CONNECTED) {
Serial.print("Menghubungkan ke MQTT...");
if (client.connect("ESP32_BuzzerClient")) {

Serial.println("connected");

72

client.subscribe(topic_sub);
client.publish(topic_pub, "ESP32 Connected");

} else {
Serial.print("Gagal, rc=");
Serial.println(client.state());

}
}

}

// SETUP
void setup() {
pinMode(BUZZER_PIN, OUTPUT);
digitalWrite(BUZZER_PIN, HIGH); // buzzer off (low trigger)

Serial.begin(115200);
client.setServer(mqtt_server, mqtt_port);
client.setCallback(callback);

}

// LOOP
void loop() {
unsigned long currentMillis = millis();

// --- Cek koneksi WiFi & MQTT tiap 30 detik ---
if (currentMillis - lastCheckMillis >= checkInterval) {
lastCheckMillis = currentMillis;
connectWiFi();

connectMQTT();
}

// --- Jalankan MQTT hanya jika sudah connect ---
if (client.connected()) {
client.loop();

}

// --- Logika buzzer ---
if (buzzerActive) {
if (!buzzerState && (currentMillis - previousMillis >=

buzzerOffTime)) {
digitalWrite(BUZZER_PIN, LOW);
buzzerState = true;
previousMillis = currentMillis;
Serial.println("Buzzer ON");

if (client.connected()) {
client.publish(topic_pub, "Buzzer ON");

}

73

iii. Setelah program berhasil diunggah, buka Serial Monitor pada baud rate 115200.

iv. Tunggu hingga muncul pesan di Arduino IDE :

Menghubungkan ke WiFi samudra43

Menghubungkan ke MQTT... connected

ESP32 Connected

yang menandakan ESP32 berhasil terhubung ke jaringan WiFi dan broker

MQTT.

v. Buka aplikasi IoT MQTT Panel di Android, kemudian tambahkan dashboard

baru dengan pengaturan berikut:

1. Broker : broker.hivemq.com

2. Port : 1883

3. Subscribe Topic : esp32/status

4. Publish Topic : esp32/buzzer

5. Widget :

a) Toggle Button untuk mengirim perintah ON/OFF ke topic publish

(esp32/buzzer).

b) Text Log untuk menampilkan pesan yang diterima dari broker, khususnya dari

topic yang kamu subscribe (esp32/status).

}
else if (buzzerState && (currentMillis - previousMillis >=

buzzerOnTime)) {
digitalWrite(BUZZER_PIN, HIGH);
buzzerState = false;
previousMillis = currentMillis;
Serial.println("Buzzer OFF");

if (client.connected()) {
client.publish(topic_pub, "Buzzer OFF");

}
}

}
}

file:///C:/Users/Allan/Downloads/broker.hivemq.com

74

D. Hasil Pengujian

1) Tampilan hasil di Serial Monitor:

Gambar 4.5.5.7 Output Koneksi MQTT di Arduino IDE

2) Tampilan hasil di aplikasi IoT MQTT Panel:

A. Saat Posisi Buzzer ON

Gambar 4.5.5.7 Output Koneksi MQTT di aplikasi IoT MQTT Panel Saat Posisi

Buzzer ON

75

B. Saat Posisi Buzzer OFF

Gambar 4.5.5.7 Output Koneksi MQTT di aplikasi IoT MQTT Panel Saat Posisi

Buzzer OFF

E. Kesimpulan

Berdasarkan hasil pengujian sistem kendali buzzer berbasis ESP32 dan MQTT,

dapat disimpulkan bahwa:

1. Sistem berhasil terhubung secara stabil ke jaringan WiFi dan broker MQTT

(broker.hivemq.com) menggunakan port 1883, serta mampu menjaga

koneksi secara otomatis saat terjadi pemutusan.

2. Komunikasi antara ESP32 dan aplikasi IoT MQTT Panel berjalan dengan

baik melalui topik:

A. Publish Topic: esp32/buzzer untuk mengirim perintah dari pengguna.

B. Subscribe Topic: esp32/status untuk menerima umpan balik kondisi buzzer.

3. Fitur non-blocking buzzer control berfungsi dengan benar — buzzer dapat

menyala dan mati berkala tanpa mengganggu proses koneksi WiFi maupun

MQTT.

4. Dari hasil uji di Serial Monitor dan IoT MQTT Panel, terlihat bahwa setiap

perintah ON/OFF yang dikirim dari dashboard diterima dan dieksekusi

sesuai dengan respon yang ditampilkan.

file:///C:/Users/Allan/Downloads/broker.hivemq.com

76

5. Dengan demikian, sistem ini telah berhasil menjalankan fungsi

pengendalian buzzer jarak jauh secara real-time menggunakan protokol

MQTT, dan siap dikembangkan untuk kontrol perangkat IoT lainnya.

4.6 Perancangan Rangkaian

4.6.1 Skenario Pengujian Rangkaian

Pengujian dilakukan untuk memastikan bahwa sistem pemberian pakan otomatis

dan notifikasi IoT bekerja dengan benar. Skenario pengujian adalah sebagai

berikut:

A. Server MQTT mensimulasikan jadwal pemberian pakan

B. Broker MQTT mengirimkan pesan ke mikrokontroler ESP32 ketika waktu

jadwal tercapai.

C. ESP32 kemudian memicu buzzer agar berbunyi sebagai bentuk notifikasi.

D. Buzzer berfungsi sebagai alarm simulasi, sehingga dosen maupun mahasiswa

dapat mengetahui waktu pemberian pakan tanpa perlu memantau akuarium fisik

secara langsung.

4.6.2 Implementasi Simulasi di Ruang Dosen

Beberapa komponen utama rangkaian sistem digunakan sebagai proyek

demonstrasi, seperti:

1. ESP32 DevKit V1

2. Buzzer dengan tipe trigger low-level

3. Koneksi WiFi dan broker MQTT sebagai media komunikasi data

Pada tahap ini, akuarium fisik tidak digunakan. Sebaliknya, simulasi penuh

dilakukan melalui sistem IoT, dengan detail berikut:

1. Jadwal pemberian pakan disimulasikan melalui server MQTT

2. Status buzzer dapat dipantau melalui aplikasi smartphone atau MQTT

Dashboard, seperti HiveMQ Dashboard.

3. Dashboard tersebut memungkinkan dosen dan mahasiswa melihat status

sistem secara real-time, yang menunjukkan bahwa logika kontrol dan

komunikasi antarperangkat berjalan dengan baik.

77

4.7 Pengujian Rangkaian Project Akhir

4.7.1 Deskripsi Umum Pengujian

Pengujian rangkaian dilakukan untuk memastikan bahwa perangkat keras dan

perangkat lunak yang telah dibuat sesuai dengan sistem pemberian pakan otomatis

berbasis IoT. Dua jenis perangkat utama digunakan dalam project akhir, yaitu:

1. Perangkat Keras (Hardware):

A. Modul mikrokontroler ESP32 DevKit V1

B. Buzzer tipe low-level trigger

C. Kabel jumper male to male dan female to female

D. Kabel charger mikrokontroler

E. Adaptor sebagai sumber daya

Seluruh perangkat dirangkai menjadi satu kesatuan sistem seperti pada gambar

rancangan rangkaian.

Gambar 4.7.1 Rangkaian Project Akhir Perangkat Keras (Hardware)

2. Perangkat Lunak (Software)

Dengan menggunakan Arduino IDE di laptop, dapat menulis kode dan

mengirimkannya ke mikrokontroler ESP32. Kemudian Smartphone menggunakan

aplikasi IoT MQTT Panel untuk melacak status sistem dan mengendalikannya

secara real-time.

4.7.2 Skenario Pengujian

Pengujian dilakukan untuk mengamati respon sistem terhadap pesan MQTT yang

dikirim dari server dan memastikan bahwa proses notifikasi bekerja dengan baik.

Tahapan skenario pengujian adalah sebagai berikut:

A. Jadwal pemberian pakan disimulasikan melalui server MQTT.

78

#include <PubSubClient.h>
#include <EEPROM.h>

B. Ketika waktu jadwal tercapai, broker MQTT mengirimkan pesan ke ESP32.

C. ESP32 memicu buzzer untuk berbunyi sebagai tanda notifikasi waktu

pemberian pakan.

D. Buzzer berfungsi sebagai alarm simulasi, yang membantu dosen dan mahasiswa

mengetahui waktu pemberian pakan tanpa harus memantau akuarium fisik.

4.7.3 Implementasi Pengujian

Rangkaian sistem diuji di ruang dosen dengan konfigurasi sebagai berikut:

a) ESP32 terhubung ke jaringan WiFi UNDIKANet dengan kredensial yang telah

diatur.

b) Broker MQTT yang digunakan adalah mqtt.dinamika.ac.id dengan port 1883.

c) Topik komunikasi yang digunakan mencakup:

i. mhs/jadwal → menerima perubahan jadwal dari server

ii. mhs/waktu → mengirim status waktu mundur ke dashboard

iii. mhs/status → mengirim status sistem (Aktif, Idle, atau Jadwal Diubah)

Pengujian dilakukan tanpa menggunakan akuarium fisik, melainkan hanya

melalui simulasi logika dan kontrol dengan memanfaatkan buzzer sebagai

indikator notifikasi serta status sistem yang muncul pada MQTT Dashboard.

Dosen dan mahasiswa dapat memantau kondisi sistem secara real-time melalui

dashboard, membuktikan bahwa komunikasi dua arah antara server MQTT dan

ESP32 berjalan dengan baik.

4.7.4 Kodingan ARDUINO IDE

//

 Konfigurasi EEPROM

#define EEPROM_SIZE 16
#define ADDR_BANYAK 0
#define ADDR_LAMAMS 4
#define ADDR_BANYAK_DEF 8
#define ADDR_LAMAMS_DEF 12

79

//
int Banyak;
int LamaMS;

// MQTT Topics
String baseTopic = String(MQTT_USER) + "/";
String topicSub = baseTopic + "jadwal";
String topicWaktu = baseTopic + "waktu";
String topicStatus = baseTopic + "status";

WiFiClient espClient;
PubSubClient client(espClient);

//

-
bool wifiTerhubung = false;
unsigned long prevWiFiPrint = 0;

Variabel tambahan //

bool buzzerAktif = false;
unsigned long buzzerStart = 0;

Variabel Buzzer //

unsigned long JadwalJamMS;
unsigned long prevMillis = 0;
unsigned long countdownMS = 0;

void saveEEPROM(int addr, int value) {
EEPROM.put(addr, value);
EEPROM.commit();

}

int readEEPROM(int addr) {

Fungsi EEPROM

= "mqtt.dinamika.ac.id";
= 1883;
= "mhs";
= "mahasiswa";

const char* MQTT_USER
const char* MQTT_PASS

const char* WIFI_PASSWORD = "SemangatPagi:)";

// Konfigurasi MQTT
-
const char* MQTT_SERVER
const int MQTT_PORT

= "UNDIKANet";

Konfigurasi WiFi //
-
const char* WIFI_SSID

// Pin Buzzer
#define BUZZER_PIN 15 // sesuaikan pin buzzer

Variabel Jadwal

80

int val;
EEPROM.get(addr, val);
return val;

}

void loadJadwal() {
Banyak = readEEPROM(ADDR_BANYAK);
LamaMS = readEEPROM(ADDR_LAMAMS);
if (Banyak <= 0) Banyak = 1;
JadwalJamMS = (unsigned long)(24.0 * 3600 * 1000 /
Banyak);

countdownMS = JadwalJamMS;
}

// MQTT Callback
void callback(char* topic, byte* payload, unsigned int

length) {
String msg;
for (unsigned int i = 0; i < length; i++) msg +=
(char)payload[i];

msg.trim();

if (msg.startsWith("UBAH:")) {
int comma = msg.indexOf(',');
if (comma > 0) {

Banyak = msg.substring(5, comma).toInt();
LamaMS = msg.substring(comma + 1).toInt();
saveEEPROM(ADDR_BANYAK, Banyak);
saveEEPROM(ADDR_LAMAMS, LamaMS);
loadJadwal();
if(client.connected())

client.publish(topicStatus.c_str(), "Jadwal Diubah");
}

} else if (msg.equalsIgnoreCase("RESET")) {
Banyak = readEEPROM(ADDR_BANYAK_DEF);
LamaMS = readEEPROM(ADDR_LAMAMS_DEF);
saveEEPROM(ADDR_BANYAK, Banyak);
saveEEPROM(ADDR_LAMAMS, LamaMS);
loadJadwal();
if(client.connected())
client.publish(topicStatus.c_str(), "Jadwal Reset");

}
}

// Setup WiFi & MQTT
-

void reconnectWiFi() {

81

if (WiFi.status() != WL_CONNECTED) {
WiFi.begin(WIFI_SSID, WIFI_PASSWORD);

}
}

void reconnectMQTT() {
if (!client.connected() && wifiTerhubung) {
String clientId = "ESP32Client_" +
String(WiFi.macAddress());
if (client.connect(clientId.c_str(), MQTT_USER,
MQTT_PASS)) {

Serial.println("MQTT Reconnected!");
client.subscribe(topicSub.c_str());

} else {
Serial.print("MQTT Gagal, rc=");
Serial.println(client.state());

}
}

}

// Setup
void setup() {
Serial.begin(115200);
pinMode(BUZZER_PIN, OUTPUT);
digitalWrite(BUZZER_PIN, HIGH); // default buzzer OFF

EEPROM.begin(EEPROM_SIZE);

if (readEEPROM(ADDR_BANYAK_DEF) == 0) {
saveEEPROM(ADDR_BANYAK_DEF, 2);
saveEEPROM(ADDR_LAMAMS_DEF, 500);
saveEEPROM(ADDR_BANYAK, 2);
saveEEPROM(ADDR_LAMAMS, 500);

}

loadJadwal();

// Mulai koneksi WiFi (non-blocking)
WiFi.begin(WIFI_SSID, WIFI_PASSWORD);
Serial.println("Menghubungkan ke WiFi...");

}

//
void loop() {

Loop

static unsigned long lastWiFiCheck = 0;
static unsigned long lastMQTTCheck = 0;
unsigned long now = millis();

82

// WiFi non-blocking

if (!wifiTerhubung) {
if (WiFi.status() == WL_CONNECTED) {

wifiTerhubung = true;
Serial.println("\nWiFi Terhubung!");
Serial.print("IP Address: ");
Serial.println(WiFi.localIP());

// Setup MQTT setelah WiFi connect
client.setServer(MQTT_SERVER, MQTT_PORT);
client.setCallback(callback);

} else if (now - prevWiFiPrint >= 500) {
Serial.print(".");
prevWiFiPrint = now;

}
}

// Reconnect WiFi & MQTT

if (now - lastWiFiCheck > 30000) {
lastWiFiCheck = now;
reconnectWiFi();

}

if (now - lastMQTTCheck > 10000) {
lastMQTTCheck = now;
reconnectMQTT();

}

// MQTT Loop
if(client.connected()) client.loop();

// ------------------- Hitung mundur & logika buzzer ----

if (now - prevMillis >= 1000) {
prevMillis = now;
if (countdownMS >= 1000) countdownMS -= 1000;
else countdownMS = 0;

int jam = (countdownMS / 3600000);
int menit = (countdownMS % 3600000) / 60000;
int detik = (countdownMS % 60000) / 1000;

char buffer[32];
sprintf(buffer, "%02d:%02d:%02d", jam, menit, detik);

83

4.7.5 Output dan Pembahasan

a. Hasil Pengujian Koneksi WiFi dan MQTT

Hasil pengujian awal pada Serial Monitor menunjukkan bahwa sistem

berhasil melakukan koneksi ke jaringan WiFi dan memperoleh alamat IP

(172.16.42.202). Namun, sebelum koneksi MQTT stabil, sistem sempat

menampilkan pesan:

if(client.connected()) {
client.publish(topicWaktu.c_str(), buffer);

} else {
Serial.println("MQTT belum connect, publish waktu

dilewati");
}

}

if (countdownMS == 0 && !buzzerAktif) {

buzzerAktif = true;
buzzerStart = now;
digitalWrite(BUZZER_PIN, LOW);
if(client.connected())
client.publish(topicStatus.c_str(), "Buzzer Aktif");
else Serial.println("MQTT belum connect, publish Buzzer
Aktif dilewati");

}

if (buzzerAktif && (now - buzzerStart >= (unsigned
long)LamaMS)) {
digitalWrite(BUZZER_PIN, HIGH);
buzzerAktif = false;
countdownMS = JadwalJamMS;
if(client.connected())
client.publish(topicStatus.c_str(), "Idle");
else Serial.println("MQTT belum connect, publish Idle
dilewati");

}
}

84

Gambar 4.7.5 Output Ketika sebelum koneksi MQTT stabil di ARDUINO IDE

Setelah beberapa kali percobaan, sistem berhasil melakukan reconnect MQTT

seperti terlihat pada log:

Gambar 4.7.5 Output MQTT reconnect di ARDUINO IDE

Hal ini membuktikan bahwa mekanisme reconnect otomatis pada kode program

bekerja dengan baik ketika koneksi ke broker MQTT sempat terputus.

b. Hasil Pengujian melalui Aplikasi IoT MQTT Panel

Setelah koneksi berhasil, sistem diuji menggunakan aplikasi IoT MQTT Panel.

Terdapat tiga topik komunikasi utama yang digunakan:

1. mhs/jadwal → menerima perintah dari pengguna (UBAH / RESET).

2. mhs/status → menampilkan status buzzer (“Idle”, “Buzzer Aktif”, “Jadwal

Diubah”, “Jadwal Reset”).

3. mhs/waktu → menampilkan waktu hitung mundur (countdown) menuju

jadwal bunyi berikutnya.

Tampilan pada panel menunjukkan perubahan status secara real-time sesuai logika

program:

a) Saat countdown berjalan, status menampilkan “Idle”.

85

Gambar 4.7.5 Saat Posisi Buzzer Idle

b) Saat waktu habis (00:00:00), status berubah menjadi “Buzzer Aktif” selama 0,5

detik.

Gambar 4.7.5 Status Buzzer Aktif

c) Setelah buzzer selesai aktif, sistem kembali ke “Idle” dan memulai perhitungan

ulang.

d) Jika perintah RESET dikirim, status berubah menjadi “Jadwal Reset” dan

countdown diatur ulang.

86

Gambar 4.7.5 Jadwal Reset
e) Jika perintah UBAH dikirim, status menjadi “Jadwal Diubah” dan nilai jadwal

baru tersimpan di EEPROM.

Gambar 4.7.5 Ubah Jadwal

c. Analisis Perhitungan Jadwal dan Interval

Rumus dasar perhitungan interval antar bunyi buzzer mengacu pada konsep

pembagian waktu dalam satu hari terhadap jumlah kejadian yang diinginkan. Secara

matematis dapat dinyatakan sebagai berikut:

87

Dengan keterangan:

JadwalJamMS = 24 × 3600 × 1000

Banyak

 Banyak = jumlah bunyi buzzer dalam satu hari

 LamaMS = durasi buzzer aktif dalam milidetik (ms)

 1 hari = 86.400.000 ms

Konsep periode dan frekuensi pada gelombang mirip (Zenius, 2021). Pada

gelombang, periode adalah kebalikan dari frekuensi, yaitu waktu yang dibutuhkan

untuk satu siklus kejadian. Dalam hal ini, setiap "siklus" adalah satu kali buzzer

menyala setiap hari. Oleh karena itu, semakin besar jumlah "siklus", semakin

pendek waktu yang dihabiskan untuk menunggu bunyi buzzer.

Sebagai Contoh :

Jika perintah yang dikirim melalui aplikasi adalah:

UBAH:2150,500

maka:

86. 400. 000

2150
= 40. 186 𝑚𝑠 ≈ 40 𝑑𝑒𝑡𝑖𝑘

Artinya, buzzer akan aktif setiap 40 detik selama 0,5 detik, kemudian kembali ke

kondisi Idle hingga interval berikutnya tercapai.

d. Tabel Hasil Uji Jadwal dan Status Buzzer

Tabel berikut menyajikan hasil uji coba perubahan jadwal, perhitungan waktu

mundur (countdown), status buzzer, serta keterangan sistem dengan durasi bunyi

buzzer sebesar 500 ms (0,5 detik). Perhitungan dilakukan berdasarkan rumus

interval antar bunyi, proses countdown, konversi waktu ke format

jam:menit:detik, reset waktu mundur, serta total durasi buzzer aktif (ON)

selama pengujian.

88

Tabel 4.7.5 Hasil Uji Jadwal dan Status Buzzer

NO Ubah

Jadwal

(Banyak,

LamaMS)

Interval Hitung

Mundur

di

MQTT

Status

Buzzer

Penjelasan

1 (50, 500) 28

menit

48 detik

00:28:48

→

00:00:00

Buzzer

Aktif

Karena 24

jam dibagi 50

= 1728 detik

(28 menit 48

detik). Jadi

setiap 28:48

buzzer ON

selama 0,5

detik.

2 (100, 500) 14

menit

24 detik

00:14:24

→

00:00:00

Buzzer

Aktif

24 jam ÷ 100

= 864 detik

(14:24). Jadi

buzzer nyala

tiap 14 menit

sekali.

3 (150, 500) 9 menit

36 detik

00:09:36

→

00:00:00

Buzzer

Aktif

24 jam ÷ 150

= 576 detik

(9:36).

Semakin

rapat.

4 (200, 500) 7 menit

12 detik

00:07:12

→

00:00:00

Buzzer

Aktif

24 jam ÷ 200

= 432 detik

(7:12).

5 (250, 500) 5 menit

45 detik

00:05:45

→

00:00:00

Buzzer

Aktif

24 jam ÷ 250

= 345,6 detik

≈ 5:45.

6 (300, 500) 4 menit

48 detik

00:04:48

→

00:00:00

Buzzer

Aktif

24 jam ÷ 300

= 288 detik

(4:48).

7 (350, 500) 4 menit

08 detik

00:04:08

→

00:00:00

Buzzer

Aktif

24 jam ÷ 350

= 246,9 detik

≈ 4:08.

8 (400, 500) 3 menit

36 detik

00:03:36

→

00:00:00

Buzzer

Aktif

24 jam ÷ 400

= 216 detik

(3:36).

89

9 (450, 500) 3 menit

12 detik

00:03:12

→

00:00:00

Buzzer

Aktif

24 jam ÷ 450

= 192 detik

(3:12).

10 (500, 500) 2 menit

52 detik

00:02:52

→

00:00:00

Buzzer

Aktif

24 jam ÷ 500

= 172,8 detik

≈ 2:52.

11 (1000,

500)

1 menit

26 detik

00:01:26

→

00:00:00

Buzzer

Aktif

Semakin

sering, tiap

86,4 detik

buzzer ON.

12 (1500,

500)

57 detik 00:00:57

→

00:00:00

Buzzer

Aktif

Nyala tiap 57

detik.

13 (2000,

500)

43 detik 00:00:43

→

00:00:00

Buzzer

Aktif

Nyala tiap 43

detik.

14 (2500,

500)

34 detik 00:00:34

→

00:00:00

Buzzer

Aktif

Nyala tiap 34

detik.

15 (3000,

500)

28 detik 00:00:28

→

00:00:00

Buzzer

Aktif

Nyala tiap 28

detik.

16 (3500,

500)

24 detik 00:00:24

→

00:00:00

Buzzer

Aktif

Nyala tiap 24

detik.

17 (4000,

500)

21 detik 00:00:21

→

00:00:00

Buzzer

Aktif

Nyala tiap 21

detik.

18 (4500,

500)

19 detik 00:00:19

→

00:00:00

Buzzer

Aktif

Nyala tiap 19

detik.

19 (5000,

500)

17 detik 00:00:17

→

00:00:00

Buzzer

Aktif

Nyala tiap 17

detik.

20 (5500,

500)

16 detik 00:00:16

→

00:00:00

Buzzer

Aktif

Nyala tiap 16

detik.

90

Analisis:

Jumlah banyak bunyi buzzer yang dibuat setiap hari, atau jumlah bunyi buzzer,

terkait dengan waktu antara bunyi semakin pendek, seperti yang ditunjukkan dalam

tabel di atas. Hal ini menunjukkan bahwa, berdasarkan perhitungan matematis

rumus interval, sistem logika program berhasil menyesuaikan waktu antara bunyi.

Selain itu, fungsi millis() dan mekanisme EEPROM bekerja dengan benar, dan

dashboard MQTT menampilkan hasil hitung mundur yang konsisten. Saat waktu

mundur mencapai 00:00:00, status "Buzzer Aktif" muncul.

91

BAB V

PENUTUP

5.1. Kesimpulan

Berdasarkan hasil perancangan, implementasi, dan pengujian sistem Monitoring

dan Notifikasi Jadwal Pemberian Pakan Ikan Akuarium berbasis ESP32 dan Buzzer

dengan komunikasi MQTT, maka dapat diambil beberapa kesimpulan sebagai

berikut:

1. Sistem Monitoring dan Notifikasi Jadwal Pemberian Pakan Ikan Akuarium

berbasis ESP32 dan Buzzer dengan komunikasi MQTT berhasil dirancang dan

diimplementasikan di Ruang Dosen S1 Teknik Komputer Universitas

Dinamika.

2. ESP32 berfungsi sebagai mikrokontroler utama yang mengatur pengiriman dan

penerimaan data melalui protokol MQTT. Ini memungkinkan platform

pemantauan untuk menerima notifikasi jadwal pakan secara real-time.

3. Buzzer bekerja sebagai indikator bunyi otomatis yang memberikan peringatan

sesuai jadwal pemberian pakan yang telah ditentukan, berdasarkan hasil

perhitungan interval waktu dan countdown yang telah diatur pada sistem.

4. Dengan menggunakan rumus konversi waktu harian (dalam milidetik), sistem

dapat menghitung jadwal dan interval bunyi dengan akurat. Selain itu, sistem

dapat menampilkan status buzzer aktif dan sisa waktu hitung mundur secara

sinkron dengan data MQTT.

5. Hasil uji coba menunjukkan bahwa sistem dapat memberikan notifikasi tepat

waktu dengan buzzer aktif selama 500 milidetik, yang menunjukkan bahwa

desain sistem telah berjalan sesuai fungsi dan mendukung otomatisasi proses

pemeliharaan ikan hias di akuarium kampus.

92

5.2. Saran

Berdasarkan hasil perancangan dan implementasi sistem Monitoring Notifikasi

Jadwal Pemberian Pakan Ikan Akuarium Menggunakan ESP32 dan Buzzer

Berbasis MQTT di Ruang Dosen S1 Teknik Komputer Universitas Dinamika,

beberapa saran yang dapat diberikan untuk pengembangan selanjutnya adalah

sebagai berikut:

1. Penambahan sensor otomatis seperti feeding sensor atau ultrasonic sensor dapat

diterapkan agar sistem tidak hanya memberikan notifikasi, tetapi juga mampu

mendeteksi kondisi pakan dan air secara real-time.

2. Mengintegrasikan dengan aktuator pemberi pakan otomatis, yang

memungkinkan sistem untuk memberikan pakan secara otomatis sesuai jadwal

yang telah ditentukan tanpa perlu melakukan perubahan manual.

3. Membangun antarmuka pengguna (UI/UX) untuk platform MQTT atau

dashboard berbasis web atau mobile untuk membuat tampilan monitoring lebih

interaktif dan menarik.

4. Meningkatkan kemampuan penyimpanan data, juga dikenal sebagai data

logging, dengan menggunakan database atau layanan cloud untuk menyimpan

sejarah jadwal pakan dan aktivitas buzzer untuk analisis jangka panjang.

5. Optimalkan konsumsi daya dan kestabilan koneksi Wi-Fi pada ESP32 untuk

membuat sistem lebih efisien dan handal, terutama jika digunakan dalam jangka

waktu yang lama.

6. Lakukan uji coba di berbagai kondisi jaringan dan suhu untuk mengetahui

kinerja sistem di laboratorium atau di luar ruangan.

93

DAFTAR PUSTAKA

Arduino. (2023). EEPROM Library Documentation. Diakses dari:

https://www.arduino.cc/en/Reference/EEPROM

AsyncMqttClient Library. (2023). GitHub Repository. Diakses dari:

https://github.com/marvinroger/async-mqtt-client

Atmel. (2016). ATmega328/P Datasheet. Atmel Corporation.

Banks, A., & Gupta, R. (2014). MQTT Version 3.1.1. OASIS Standard.

Banzi, M., & Shiloh, M. (2014). Getting Started with Arduino. Maker Media.

Burhani, F., Zaenurrohman, Z., & Purwiyanto, P. (2022). Rancang Bangun

Monitoring Akuarium Dan Pakan Ikan Otomatis Berbasis Internet Of Things (IOT).

Journal of Electrical Engineering and Computer (JEECOM), 4(2), 62-68.

https://ejournal.unuja.ac.id/index.php/jeecom/article/view/4309

Chaidir, A. R., Hidayatullah, A. S., Utomo, S. B., Cahyadi, W., Muldayani, W.,

Arifin, S., & Wicaksono, I. (2024). Evaluasi Pengujian Alat Pemberi Pakan Ikan

Otomatis Berbasis IoT dengan Protokol MQTT. Jurnal Telematika, 19(1), 1-5.

https://journal.ithb.ac.id/index.php/telematika/article/view/624

clipse Mosquitto. (2023). Mosquitto MQTT Broker. Diakses dari:

https://mosquitto.org

Espressif Systems. (2023). ESP32 Technical Reference Manual. Espressif Systems.

Koromari, B. I., & David, F. (2023). Perancangan Dan Implementasi Sistem Pakan

Otomatis Dan Monitoring Tds Pada Akuarium Ikan Hias Berbasis Iot. IT-Explore:

Jurnal Penerapan Teknologi Informasi dan Komunikasi, 2(2), 154-164.

https://ejournal.uksw.edu/itexplore/article/view/8903

Ma'shumah, S., Pramarthaningthyas, E. K., & Rohman, F. (2024). Sistem

Monitoring Pemberian Pakan Ikan Di Aquarium Ikan Hias Menggunakan Aplikasi

Blynk Dengan Memanfaatkan Teknologi Iot. Uranus : Jurnal Ilmiah Teknik

Elektro, Sains dan Informatika, 2(3). https://doi.org/10.61132/uranus.v2i3.194

Mischianti, M. (n.d.). DOIT ESP32 Dev Kit V1 High-Resolution Pinout and Specs.

https://mischianti.org/doit-esp32-dev-kit-v1-high-resolution-pinout-and-specs/

Nurhidayah, T., Ulfah, M., & Jamal, N. (2024). Sistem Monitoring Kualitas Air

Dan Pakan Otomatis Budidaya Ikan Lele Berbasis Internet Of Things. Jurnal Fokus

https://www.arduino.cc/en/Reference/EEPROM
https://github.com/marvinroger/async-mqtt-client
https://ejournal.unuja.ac.id/index.php/jeecom/article/view/4309
https://journal.ithb.ac.id/index.php/telematika/article/view/624
https://mosquitto.org/
https://ejournal.uksw.edu/itexplore/article/view/8903
https://doi.org/10.61132/uranus.v2i3.194
https://mischianti.org/doit-esp32-dev-kit-v1-high-resolution-pinout-and-specs/?utm_source=chatgpt.com

94

Elektroda : Energi Listrik, Telekomunikasi, Komputer, Elektronika dan Kendali,

9(2). https://doi.org/10.33772/jfe.v9i2.174

PubSubClient Library. (2023). Arduino MQTT Library Documentation. Diakses

dari: https://pubsubclient.knolleary.net/

Wijaya, P., & Wellem, T. (2022). Perancangan dan Implementasi Sistem

Pemantauan Suhu dan Ketinggian Air pada Akuarium Ikan Hias berbasis

IoT. Jurnal Sistem Komputer Dan Informatika (JSON), 4(1), 225–233.

https://doi.org/10.30865/json.v4i1.4539

Zenius. (2021, 8 April). Belajar Rumus Frekuensi Gelombang – Materi Fisika Kelas

11. Diakses dari https://www.zenius.net/blog/rumus-frekuensi/

https://doi.org/10.33772/jfe.v9i2.174
https://pubsubclient.knolleary.net/
https://doi.org/10.30865/json.v4i1.4539
https://www.zenius.net/blog/rumus-frekuensi/?utm_source=chatgpt.com

	KERJA PRAKTIK
	FAIRUS FRANS MAULANA PAMBAYUN SUGIARTO 22410200006
	2025

	NIM : 22410200006
	FAKULTAS TEKNOLOGI DAN INFORMATIKA UNIVERSITAS DINAMIKA
	2025

	LEMBAR PENGESAHAN
	ABSTRAK
	KATA PENGANTAR
	DAFTAR ISI
	DAFTAR TABEL
	Halaman

	DAFTAR GAMBAR
	DAFTAR LAMPIRAN
	Halaman

	BAB I PENDAHULUAN
	1.2 Rumusan Masalah
	1.3 Batasan Masalah
	1.4 Tujuan
	1.5 Manfaat

	BAB II
	2.1 Sejarah Universitas Dinamika
	2.2 Visi Misi Dan Tujuan Perusahaan
	2.2.1 Visi
	2.2.2 Misi
	2.2.3 Tujuan
	2.3 Profil Perusahaan
	2.4 Struktur Organisasi
	2.5 Program Studi S1 Teknik Komputer

	2.5.1 VISI MISI
	Visi:

	2.5.2 TUJUAN
	2.5.3 PROFESI LULUSAN
	BAB III LANDASAN TEORI
	3.1 Akuarium Hias

	3.2 ESP 32
	3.5 IOT MQTT PANEL
	3.6 Arduino IDE

	BAB IV DESKRIPSI PEKERJAAN
	4.1. Uraian Pekerjaan
	4.2 Diagram Alur Pengerjaan
	4.2.1 Studi Literatur Komponen
	4.2.3 Perancangan Rangkaian
	4.2.4 Pengujian Rangkaian
	4.3. Rangkaian Skematik Untuk Simulasinya
	4.3.1 Komponen yang Terlibat
	4.3.2 Sistem Penjadwalan dan Manajemen EEPROM
	4.3.3 Koneksi WiFi dan MQTT
	4.4 Studi Literatur
	4.4.1 Mempelajari EEPROM
	4.4.2 Mempelajari Koneksi WiFi
	4.4.3 Konsep Dasar MQTT dan Implementasinya pada ESP32/ESP8266
	4.5.1 Tujuan Pengujian
	4.5.2 Alat dan Bahan
	2. Bahan
	4.5.3 Deskripsi Singkat Komponen Utama
	4.5.4 Skema Hubungan Fisik Rangkaian
	4.5.5 Langkah Pengujian
	4.5.6 Pengujian Buzzer 1 Detik ON – 1 Detik OFF
	4.5.7 Pengujian Buzzer Menyala Setiap 10 Detik Sekali
	= 0,1 Hz
	4.5.8 Pengujian Buzzer Bunyi Setiap 1 Menit Selama 5 Detik
	4.5.9 Kodingan Buzzer Bunyi Menggunakan Millis()
	4.5.10 Pengujian Buzzer Menggunakan EEPROM
	4.5.11 Pengujian Buzzer Menggunakan Koneksi WIFI
	4.5.12 Pengujian Buzzer Menggunakan Koneksi MQTT
	4.6 Perancangan Rangkaian
	4.6.1 Skenario Pengujian Rangkaian
	4.6.2 Implementasi Simulasi di Ruang Dosen
	4.7.1 Deskripsi Umum Pengujian
	4.7.2 Skenario Pengujian
	4.7.3 Implementasi Pengujian
	4.7.4 Kodingan ARDUINO IDE

	BAB V PENUTUP
	5.1. Kesimpulan
	5.2. Saran

	DAFTAR PUSTAKA

