

RANCANG BANGUN SISTEM KLASIFIKASI JENIS KENDARAAN BERBASIS

DEEP LEARNING DENGAN PENGAMBILAN GAMBAR DAN NOTIFIKASI

REAL-TIME VIA TELEGRAM PADA CV. INDAH JAYA SENTOSA

KERJA PRAKTIK

Program Studi

S1 Teknik Komputer

Oleh :

Ahmad Fahmi Ilmi Fauzi

22410200009

FAKULTAS TEKNOLOGI DAN INFORMATIKA

UNIVERSITAS DINAMIKA

2025

ii

RANCANG BANGUN SISTEM KLASIFIKASI JENIS KENDARAAN DEEP

LEARNING DENGAN PENGAMBILAN GAMBAR DAN NOTIFIKASI REAL-

TIME VIA TELEGRAM PADA CV. INDAH JAYA SENTOSA

Diajukan sebagian salah satu syarat untuk menyelesaikan

 Program Strata Satu (S1)

Disusun Oleh :

Nama : Ahmad Fahmi Ilmi Fauzi

NIM : 22410200009

Program : S1 (Strata Satu)

Jurusan : Teknik Komputer

FAKULTAS TEKNOLOGI DAN INFORMATIKA

UNIVERSITAS DINAMIKA

2025

iii

“Angrêbuting batin, tan kêna kawênang rasa.”

iv

v

vi

ABSTRAK

CV. Indah Jaya Sentosa merupakan perusahaan distribusi barang yang bergantung

pada pengelolaan arus kendaraan masuk-keluar. Namun, pencatatan manual oleh petugas

keamanan sering menyebabkan keterlambatan laporan dan informasi, mengganggu

efisiensi serta meningkatkan risiko operasional seperti kehilangan data pengawasan

kendaraan krusial bagi rantai pasok. Oleh karena itu, diperlukan solusi teknologi untuk

monitoring kendaraan secara cepat, akurat, dan real-time guna mendukung transformasi

digital di sektor distribusi.

Pada kerja praktek ini mengimplementasikan sistem klasifikasi kendaraan

berbasis deep learning dengan model MobileNetV2, terintegrasi kamera untuk

pengambilan gambar otomatis. Sistem mengklasifikasikan kendaraan menjadi empat

kategori (truk, mobil, motor, bus) dan mengirimkan notifikasi real-time via Telegram: ke

petugas keamanan untuk semua kendaraan, serta ke admin khusus untuk truk terkait

distribusi. Pendekatan ini mengotomatisasi proses manual, meminimalkan kesalahan, dan

mempercepat informasi.

Pengujian menunjukkan model MobileNetV2, mencapai akurasi lebih 90%

dengan waktu notifikasi kurang dari 10 detik. Sistem meningkatkan kecepatan, akurasi,

dan integrasi monitoring di perusahaan, mendukung efisiensi petugas serta pengawasan

distribusi. Penelitian ini berkontribusi pada penerapan deep learning untuk solusi industri

distribusi, sebagai acuan bagi perusahaan serupa.

Kata kunci: Artificial Intelligence, Deep learning, MobileNetV2, Klasifikasi Kendaraan,

Pengambilan Gambar, Telegram, CV. Indah Jaya Sentosa

vii

KATA PENGANTAR

Penulis bersyukur kepada Allah SWT atas segala kemudahan dan petunjuk dalam

menyelesaikan laporan kerja praktik ini, yang bertujuan untuk mengembangkan sistem

monitoring kendaraan berbasis deep learning guna mendukung efisiensi operasional CV.

Indah Jaya Sentosa. Laporan ini merupakan dokumentasi hasil kerja praktik yang

mengintegrasikan teknologi kecerdasan buatan untuk mengotomatisasi klasifikasi

kendaraan dan pengiriman notifikasi real-time melalui aplikasi Telegram. Penelitian ini

diharapkan dapat memberikan manfaat nyata bagi perusahaan dalam meningkatkan

akurasi dan kecepatan pengawasan kendaraan, sekaligus menjadi referensi untuk

pengembangan sistem serupa di bidang distribusi barang.

Ucapan terima kasih disampaikan kepada semua pihak yang telah memberikan dukungan

dalam penyusunan laporan ini, yaitu:

1. Allah SWT atas segala rahmat, berkat, dan hidayah yang telah diberikan.

2. Orang tua dan keluarga yang senantiasa memberikan doa, dukungan, serta

motivasi.

3. Tan Aemelia, S.Kom., M.MT. selaku Dekan Fakultas Teknologi dan

Informatika.

4. Dr. Ira Puspasari, S.Si., M.T. selaku Ketua Program Studi S1 Teknik

Komputer.

5. Harianto, S.Kom., M.Eng. selaku dosen pembimbing kerja praktik.

6. Yayuk Mariana selaku penyelia di CV Indah Jaya Sentosa.

7. Ahmad Yani sebagai ketua divisi IT & Teknologi.

8. Teman-teman khususnya anak-anak Hima Karyo yang memberikan bantuan

dan dukungan dalam penyusunan laporan ini.

Penulis menyadari bahwa laporan ini masih memiliki kekurangan. Oleh karena itu, kritik

dan saran yang membangun sangat diharapkan untuk perbaikan di masa mendatang.

Surabaya, 23 Desember 2025

 Ahmad Fahmi Ilmi fauzi

viii

DAFTAR ISI

ABSTRAK .. vi

KATA PENGANTAR ... vii

DAFTAR ISI ... viii

DAFTAR GAMBAR .. xi

DAFTAR TABEL .. xii

DAFTAR LAMPIRAN .. Error! Bookmark not defined.

BAB I PENDAHULUAN .. 1

1.1 Latar Belakang ... 1

1.2 Rumusan Masalah ... 2

1.3 Batasan Masalah .. 2

1.4 Tujuan ... 3

1.5 Manfaat ... 3

BAB II GAMBARAN UMUM INSTANSI ... 4

2.1 Latar Belakang Perusahaan ... 4

2.2 Identitas Perusahaan ... 6

2.3 Visi Perusahaan.. 6

2.4 Misi Perusahaan ... 6

2.5 Struktur Organisasi ... 7

BAB III LANDASAN TEORI ... 9

3.1 Konsep Dasar Deep learning ... 9

3.1.1 Definisi dan Sejarah Singkat – Jaringan Saraf dalam Machine Learning 9

3.1.2 Perbedaan AI, Machine Learning, Deep learning ... 11

3.2 Convolutional Neural Network (CNN) .. 13

3.2.1 Arsitektur Dasar CNN - Jaringan khusus pemrosesan gambar 14

3.2.2 Layer-layer dalam CNN - Konvolusi, Pooling, Fully Connected 15

3.3 Transfer Learning ... 17

3.3.1 Konsep Transfer Learning .. 20

3.3.2 Keuntungan Menggunakan Model Pre-trained .. 21

3.4 MobileNetV2 ... 22

3.4.1 Arsitektur dan Keunggulan - Ringan untuk Perangkat Mobile 23

3.4.2 Aplikasi dalam Klasifikasi Gambar - Deteksi Objek Real-time 25

3.5 Telegram Bot API ... 26

3.5.1 Konsep Webhook dan Messaging ... 27

3.5.2 Integrasi dengan Aplikasi External ... 29

ix

3.6 Computer Vision untuk Klasifikasi Kendaraan ... 30

3.6.1 Konsep Object Recognition .. 31

3.6.2 Aplikasi CV (computer vision) dalam Sistem Transportasi 32

3.7 Evaluasi Model Deep learning .. 33

3.7.1 Metrik Akurasi, Precision, Recall .. 34

3.7.2 Confusion Matrix ... 35

3.8 Library Python .. 36

BAB IV PEMBAHASAN ... 39

4.1 Analisis Kebutuhan Sistem ... 39

4.1.1 Kebutuhan Fungsional .. 39

4.1.2 Kebutuhan Non-Fungsional ... 41

4.2 Perancangan Sistem ... 41

4.2.1 Diagram Blok Sistem ... 42

4.2.2 Arsitektur Model Deep learning - MobileNetV2 Custom Layers 44

4.3 Implementasi Sistem .. 46

4.3.1 Environment Development ... 47

4.3.2 Alur Kerja Sistem .. 47

4.3.3 Implementasi Kode Program ... 49

4.4 Pengujian Sistem .. 61

4.4.1 Metodologi Testing .. 62

4.4.2 Skenario Pengujian ... 64

4.4.3 Hasil Pengujian .. 66

4.5 Analisis Performa Sistem .. 73

4.5.1 Analisis Kecepatan Inferensi .. 74

4.5.2 Analisis Akurasi per Kelas Kendaraan ... 75

4.5.3 Analisis Latency Notifikasi .. 77

4.6 Analisis dan Pembahasan .. 80

4.6.1 Analisis Metrik Evaluasi Model ... 80

4.6.2 Analisis Kinerja Sistem ... 80

4.6.3 Analisis Notifikasi Telegram .. 81

BAB V KESIMPULAN DAN SARAN .. 85

5.1 Kesimpulan ... 85

5.1.1 Pencapaian Research Questions .. 85

5.1.2 Kontribusi untuk Perusahaan .. 86

5.1.3 Pencapaian Teknis Sistem .. 87

5.2 Saran ... 87

x

5.2.1 Kesimpulan Akhir ... 88

DAFTAR PUSTAKA .. 89

LAMPIRAN .. Error! Bookmark not defined.

xi

DAFTAR GAMBAR

Figure 2.1 Logo Perusahaan ... 4
Figure 2.2 Lokasi Perusahaan .. 4
Figure 2.3 Struktur Organisasi .. 7
Figure 3.1 Diagram Venn ... 12
Figure 3.2 Arsitektur CNN ... 15
Figure 3.3 Diagram Transfer Learning ... 19
Figure 3.4 Arsitektur MobileNetV2 ... 23
Figure 3.5 Arsitektur Inverted Residual Block .. 24
Figure 3.6 Diagram alur Telegram Bot API ... 27
Figure 4.1 Diagram Blok Sistem .. 43
Figure 4.2 Arsitektur Model Custom .. 46
Figure 4.3 Diagram Alur Kerja Sistem ... 48
Figure 4.4 Diagram Distribusi Dataset .. 63
Figure 4.5 Confusion Matrix .. 68
Figure 4.6 Model Summary .. 70
Figure 4.7 Diagram Model Summary .. 71
Figure 4.8 Perbandingan Precision, Recall, dan F1-Score per kelas 72
Figure 4.9 Diagram Latency ... 78
Figure 4.10 Hasil Prediksi .. 80
Figure 4.11 Diagram Latency ... 81
Figure 4.12 Notifikasi Kendaraan ke Security ... 82
Figure 4.13 Notifikasi Security ... 83
Figure 4.14 Notifikasi Admin ... 83

xii

DAFTAR TABEL

Table 3.1 Perbandingan AI, ML dan DL .. 13
Table 3.2 Library Python ... 37
Table 4.1 Training, Akurasi dan Loss ... 67
Table 4.2 Kecepatan Notifikasi Telegram ... 68
Table 4.3 Analisis Waktu .. 75
Table 4.4 Rincian Performa Model ... 76
Table 4.5 Rincian Waktu Notifikasi .. 78
Table 4.6 Waktu Respon ... 79
Table 5.1 Pencapaian Teknis .. 87

1

BAB I

PENDAHULUAN

1.1 Latar Belakang

CV. Indah Jaya Sentosa, sebuah perusahaan yang bergerak di bidang

distribusi barang, mengandalkan kelancaran arus kendaraan yang masuk dan

keluar area perusahaan untuk mendukung operasional sehari-hari. Berbagai jenis

kendaraan, seperti truk, mobil, motor, dan bus, beroperasi untuk memenuhi

kebutuhan pengiriman barang. Namun, pencatatan data kendaraan masih

dilakukan secara manual oleh petugas keamanan, yang menyebabkan

keterlambatan laporan dan lambatnya penyampaian informasi kepada

manajemen atau tim distribusi. Akibatnya, efisiensi operasional terganggu,

terutama dalam pengawasan kendaraan truk yang berperan besar dalam distribusi

barang.

Tantangan ini diperparah oleh volume kendaraan yang signifikan, yang

menuntut penanganan cepat dan akurat. Sistem manual saat ini tidak mampu

menghasilkan data yang andal secara real-time, padahal kecepatan dan ketepatan

informasi sangat penting dalam industri distribusi untuk mendukung

pengambilan keputusan, seperti pengaturan jadwal pengiriman atau pemantauan

kendaraan pengangkut barang. Ketidakefisienan ini meningkatkan risiko

operasional, seperti keterlambatan penanganan truk pengangkut barang atau

potensi kehilangan data penting, yang dapat mengganggu rantai pasok

perusahaan.

Perkembangan teknologi Artificial Intelligence (AI) dan deep learning

menawarkan solusi untuk mengatasi masalah tersebut melalui sistem otomatis

yang mampu mengenali dan mengklasifikasikan kendaraan dengan cepat dan

akurat. Dengan integrasi kamera untuk pengambilan gambar dan sistem

notifikasi real-time melalui Telegram, informasi dapat langsung sampai ke

petugas keamanan dan manajemen tanpa menunggu laporan manual. Penerapan

teknologi ini memungkinkan CV. Indah Jaya Sentosa untuk beradaptasi dengan

tren otomatisasi berbasis AI di industri distribusi, sehingga meningkatkan

2

efisiensi dan daya saing operasional.

Berdasarkan kebutuhan tersebut, kerja praktek ini bertujuan untuk

mengembangkan sistem pemantauan kendaraan berbasis deep learning yang

dapat mengklasifikasikan jenis kendaraan secara otomatis dan mengirimkan

notifikasi real-time melalui Telegram. Sistem ini diharapkan dapat mengatasi

keterbatasan sistem manual, meningkatkan akurasi dan kecepatan monitoring

kendaraan, serta memperkuat pengawasan terhadap aktivitas distribusi barang di

CV. Indah Jaya Sentosa. Langkah ini sekaligus mendukung upaya perusahaan

untuk memodernisasi operasionalnya di tengah dinamika industri distribusi yang

semakin kompetitif.

1.2 Rumusan Masalah

Berdasarkan latar belakang di atas, berikut adalah rumusan masalah yang dapat

dirumuskan:

1. Bagaimana merancang sistem berbasis deep learning menggunakan

model MobileNetV2 untuk mengenali dan mengklasifikasikan jenis

kendaraan (truk, mobil, motor, dan bus) secara otomatis dan akurat?

2. Bagaimana mengintegrasikan sistem klasifikasi kendaraan dengan

kamera untuk pengambilan gambar dan memastikan pengiriman

notifikasi ke petugas keamanan dan admin melalui aplikasi Telegram

dalam waktu kurang dari 10 detik?

1.3 Batasan Masalah

Penelitian ini dibatasi pada hal-hal berikut:

1. Jenis Kendaraan: Sistem hanya mengenali empat jenis kendaraan: truk,

mobil, motor, dan bus.

2. Teknologi: Menggunakan model deep learning MobileNetV2 dan kamera

untuk menangkap gambar kendaraan.

3. Notifikasi: Notifikasi dikirim lewat Telegram ke petugas keamanan untuk

semua kendaraan, dan ke admin khusus untuk truk.

4. Lokasi: Sistem hanya diuji di area CV. Indah Jaya Sentosa.

5. Pengukuran: Fokus pada akurasi klasifikasi > 90% dan kecepatan

3

notifikasi < 10 detik.

6. Data: Hanya menggunakan gambar kendaraan dari kamera, tanpa data

lain seperti suara.

1.4 Tujuan

Berdasarkan rumusan masalah, tujuan penelitian ini adalah:

1. Mengembangkan sistem monitoring kendaraan otomatis berbasis deep

learning di CV. Indah Jaya Sentosa

2. Merancang sistem berbasis deep learning dengan model MobileNetV2

untuk mengenali dan mengklasifikasikan jenis kendaraan (truk, mobil,

motor, dan bus) secara akurat.

3. Mengintegrasikan sistem klasifikasi kendaraan dengan kamera untuk

menangkap gambar secara real-time dan mengirimkan notifikasi melalui

Telegram dalam waktu kurang dari 10 detik.

1.5 Manfaat

Penelitian ini memberikan manfaat sebagai berikut:

1. Informasi Real-time: Notifikasi melalui Telegram yang dikirim dalam

waktu kurang dari 10 detik memastikan petugas keamanan dan admin

mendapatkan informasi cepat untuk pengambilan keputusan.

2. Mendukung Pengawasan Distribusi: Sistem ini membantu perusahaan

memantau kendaraan, terutama truk yang terkait dengan distribusi

barang, sehingga pengelolaan rantai pasok menjadi lebih baik.

3. Meningkatkan Keamanan dan Akurasi Data: Membantu memastikan data

kendaraan tercatat dengan benar dan aktivitas keluar-masuk kendaraan

secara akurat.

4

BAB II

GAMBARAN UMUM INSTANSI

2.1 Latar Belakang Perusahaan

Figure 2.1 Logo Perusahaan

Figure 2.2 Lokasi Perusahaan

CV. Indah Jaya Sentosa adalah perusahaan yang bergerak di bidang

distribusi barang, dengan fokus pada penyediaan layanan pengiriman dan

pengelolaan rantai pasok untuk berbagai jenis produk. Berbasis di Surabaya,

perusahaan ini telah menjalankan operasinya selama beberapa tahun dengan

mengandalkan jaringan distribusi yang luas dan tim operasional yang kompeten.

Berlokasi strategis di Jalan Teluk Nibung Barat 7/20, Perak, Surabaya, Jawa

5

Timur, CV. Indah Jaya Sentosa memiliki aksesibilitas optimal ke pelabuhan dan

jalur transportasi utama, yang mendukung kelancaran distribusi barang ke

berbagai wilayah di Indonesia. Komunikasi dengan perusahaan dapat dilakukan

melalui nomor telepon 081332876018 atau email

indahjayasentosa1@yahoo.com, dengan kontak utama Yayuk Mariana, yang

memastikan responsivitas terhadap kebutuhan pelanggan.

CV. Indah Jaya Sentosa menghadapi tantangan operasional yang

signifikan, terutama dalam pengelolaan arus kendaraan yang meliputi truk

pengangkut barang, mobil, motor, dan bus, dengan rata-rata 50 kendaraan per hari.

Proses monitoring dan pencatatan kendaraan saat ini masih dilakukan secara

manual oleh petugas keamanan, yang sering kali menyebabkan keterlambatan

penyusunan laporan, kesalahan input data, dan keterbatasan informasi real-time

untuk keperluan manajerial. Kondisi ini berdampak pada efisiensi operasional,

khususnya dalam pengawasan truk yang memainkan peran krusial dalam aktivitas

distribusi. Untuk mengatasi tantangan tersebut, perusahaan berkomitmen untuk

mengadopsi transformasi digital melalui penerapan teknologi kecerdasan buatan,

seperti sistem klasifikasi kendaraan berbasis deep learning, guna meningkatkan

akurasi dan kecepatan pengelolaan data kendaraan.

Struktur organisasi CV. Indah Jaya Sentosa dipimpin oleh Direktur

Utama, Yuri AS, yang bertanggung jawab atas arah strategis dan kebijakan

perusahaan, didukung oleh Wakil Direktur Yacob Adi Saputra untuk memastikan

koordinasi antardivisi yang efektif. Divisi Operasional, yang dipegang oleh

Rachmad Fajar, mengelola aktivitas harian termasuk pengawasan kendaraan,

sementara Yayuk Mariana sebagai kepala Sumber Daya Manusia mengelola

aspek perekrutan dan kesejahteraan karyawan. Divisi IT dan Teknologi di bawah

Ahmad Yani memainkan peran kunci dalam mengintegrasikan solusi teknologi,

seperti sistem berbasis AI, untuk mendukung efisiensi operasional. Dengan

pendekatan ini, CV. Indah Jaya Sentosa berupaya memperkuat posisinya sebagai

perusahaan distribusi terpercaya yang mampu beradaptasi dengan dinamika

industri modern.

6

2.2 Identitas Perusahaan

Tempat : CV. Indah Jaya Sentosa

 Alamat : Jl. Teluk Nibung barat 7/20, Perak, Surabaya, Jawa Timur

Telepon : 081332876018

 Contact Person : Yayuk Mariana

 Email : indahjayasentosa1@yahoo.com

2.3 Visi Perusahaan

“Menjadi perusahaan distribusi terpercaya dan terdepan di Indonesia

dengan pelayanan prima, jaringan yang luas, serta komitmen terhadap kualitas

dan kepuasan pelanggan.”

2.4 Misi Perusahaan

Untuk mewujudkan visi tersebut, perusahaan berkomitmen memberikan

pelayanan distribusi yang cepat, tepat, dan aman; menjaga kualitas produk sesuai

standar; membangun jaringan distribusi yang luas dan efisien; mengoptimalkan

teknologi untuk mendukung efektivitas operasional menjalin hubungan kerja

yang baik dengan mitra bisnis serta terus meningkatkan kompetensi sumber daya

manusia melalui pelatihan dan pengembangan berkelanjutan.

mailto:indahjayasentosa1@yahoo.com

7

2.5 Struktur Organisasi

Figure 2.3 Struktur Organisasi

Pada gambar struktur organisasi pada CV. Indah Jaya Sentosa. Setiap bagian

memiliki tugas pokok dan fungsi masing-masing. Berikut di bawah ini adalah

detail dari tugas pokok dan fungsinya

1. Direktur Utama - Yuri AS Pemimpin tertinggi perusahaan yang

bertanggung jawab penuh atas VISI, MISI, Strategi dan arah kebijakan

perusahaan. Mengambil keputusan strategis yang berpengaruh besar

terhadap perkembangan dan keberlangsungan usaha. Memastikan

seluruh departemen bekerja sesuai target dan tujuan perusahaan.

2. Wakil Direktur - Yacob Adi Saputra Mendampingi dan membantu

Direktur Utama dalam menjalankan tugas manajerial. Menggantikan

peran Direktur Utama saat berhalangan hadir. Mengawasi koordinasi

antar divisi agar berjalan efisien dan efektif

3. Keuangan dan Akuntansi - Achmad Hambali Mengelola arus kas masuk

dan keluar perusahaan. Menyusun laporan keuangan secara berkala.

Mengatur anggaran, pengeluaran, pajak dan memastikan kepatuhan

terhadap regulasi keuangan.

4. Sumber Daya Manusia (SDM) - Yayuk Mariana Mengelola perekrutan,

pelatihan dan pengembangan karyawan. Mengatur administrasi

8

karyawan, gaji, tunjangan dan kesejahteraan pegawai. Menjaga hubungan

kerja yang sehat dan produktif antara tim.

5. Operasional - Rachmad Fajar Mengatur kegiatan operasional harian agar

berjalan lancar dan efisien. Mengoptimalkan proses kerja di lapangan.

Memastikan standar kualitas produk atau layanan terpenuhi.

6. Pemasaran dan Penjualan - Irsya Pratiwi Menyusun strategi pemasaran

untuk memperluas pangsa pasar. Mengelola promosi, branding dan

hubungan dengan pelanggan. Mengawasi proses penjualan dan

pencapaian target penjualan.

7. Riset dan Pengembangan - Mujiah Mengembangkan inovasi produk atau

layanan baru. Melakukan riset pasar dan analisis tren industri.

Meningkatkan kualitas dan efisiensi produk agar tetap kompetitif.

8. IT dan Teknologi - Ahmad Yani Mengelola infrastruktur teknologi

perusahaan. Mengembangkan dan memelihara sistem informasi yang

menunjang operasional. Menjaga keamanan data dan memastikan

pemanfaatan teknologi secara optimal.

9

BAB III

LANDASAN TEORI

3.1 Konsep Dasar Deep learning

Deep learning (Pembelajaran Mendalam) telah didefinisikan sebagai sub-

bidang dari Machine Learning yang menggunakan jaringan saraf tiruan dengan

banyak lapisan tersembunyi (Lecun et al., 2015). Fondasi dari konsep ini adalah

kemampuan jaringan untuk mempelajari representasi data secara hierarkis dan

abstrak secara otomatis. Seperti yang dijelaskan oleh (Schmidhuber, 2015),

kedalaman arsitektur inilah yang memungkinkan model untuk memecahkan

masalah yang sangat kompleks yang sebelumnya sulit ditangani oleh teknik

machine learning konvensional. Proses hierarkis ini dapat dianalogikan dengan

cara kerja sistem visual otak manusia, di mana lapisan-lapisan saraf memproses

informasi dari fitur yang sederhana (seperti tepian dan sudut) hingga yang

semakin kompleks (seperti bentuk objek secara utuh.

Dalam perkembangannya, keberhasilan Deep learning didorong oleh tiga

faktor kunci: ketersediaan data dalam skala besar (big data), peningkatan daya

komputasi (terutama dengan penggunaan GPU), serta kemajuan dalam algoritma

dan arsitektur (Goodfellow et al., 2016). Arsitektur-arsitektur khusus

seperti Convolutional Neural Networks (CNN) untuk data gambar dan Recurrent

Neural Networks (RNN) untuk data sekuensial telah menjadi landasan bagi

berbagai terobosan. Sebagai contoh, penelitian oleh (Krizhevsky et al., n.d.) pada

kompetisi ImageNet menunjukkan bagaimana arsitektur Deep CNN dapat

mengurangi tingkat kesalahan pengenalan gambar secara drastis, sehingga

membuka era modern Deep learning. Dengan demikian, Deep learning tidak

hanya menjadi tulang punggung dalam kemajuan Kecerdasan Buatan tetapi juga

terus mentransformasi berbagai bidang seperti computer vision dan pemrosesan

bahasa alami.

3.1.1 Definisi dan Sejarah Singkat – Jaringan Saraf dalam Machine

Learning

Jaringan Saraf Tiruan (Artificial Neural Network/ANN) adalah

sebuah model komputasi yang terinspirasi dari struktur dan fungsi biologis

10

otak manusia (Mcculloch & Pitts, 1943). Jaringan saraf didefinisikan

sebagai prosesor terdistribusi paralel yang tersusun atas unit-unit pemroses

sederhana (neuron) yang memiliki kecenderungan alamiah untuk

menyimpan pengetahuan dan membuatnya tersedia untuk digunakan. Dalam

konteks pembelajaran mesin, jaringan saraf berfungsi sebagai arsitektur

pembelajaran yang mampu menangkap pola dan hubungan kompleks dalam

data melalui proses pelatihan berulang.

Perkembangan jaringan saraf dalam pembelajaran mesin telah

melalui beberapa periode penting:

1. Era Konsep Awal (1940-1950)

a. Model neuron formal pertama diperlakukan oleh (Mcculloch &

Pitts, 1943)yang mendemonstrasikan bagaimana jaringan neuron

sederhana dapat melakukan komputasi logika.

b. Pengembangkan perceptron, model jaringan saraf paling

sederhana yang mampu melakukan klasifikasi pola linear.

2. Masa Kemunduran (1970-1980)

a. Kritik fundamental dari (Minsky & Papert, 1969) menunjukkan

keterbatasan perceptron dalam menyelesaikan masalah non-linear

seperti fungsi XOR, yang menyebabkan penurunan minat

penelitian dalam bidang ini.

b. (Rumelhart et al., 1986)) mempopulerkan kembali algoritma

backpropagation yang efektif untuk melatih jaringan multi-layer,

membuka jalan untuk arsitektur yang lebih dalam.

3. Kebangkitan Deep learning (2000-Sekarang)

a. (Hinton G.E. & Salakhutdinov R.R., 2006) memperkenalkan Deep

Belief Networks yang menunjukkan efektivitas pelatihan layer-by-

layer untuk jaringan yang dalam.

b. (Krizhevsky et al., n.d.) mendemonstrasikan keberhasilan Deep

Convolutional Neural Network dalam kompetisi ImageNet,

menandai revolusi deep learning modern.

Perkembangan historis ini menunjukkan evolusi jaringan saraf dari konsep

11

teoretis sederhana menjadi arsitektur kompleks yang mendorong kemajuan

signifikan dalam bidang pembelajaran mesin dan kecerdasan buatan.

3.1.2 Perbedaan AI, Machine Learning, Deep learning

Menurut (Russell & Norvig, 2022), ketiga konsep ini membentuk

hubungan hierarkis yang semakin spesifik, dimana Kecerdasan Buatan

(Artificial Intelligence) merupakan payung terluas, Machine Learning

(ML) merupakan bagian dari AI, dan Deep learning (DL) merupakan

implementasi khusus dari Machine Learning.

1. Artificial Intelligence

a. Definisi: (McCarthy et al., 1955), AI adalah bidang studi yang

didasarkan pada konjektur bahwa setiap aspek pembelajaran atau

fitur kecerdasan lainnya pada prinsipnya dapat dideskripsikan

dengan begitu rincinya sehingga sebuah mesin dapat dibuat untuk

mensimulasikannya.

b. Cakupan: Sistem berbasis aturan, pemrograman simbolik,

robotika, sistem pakar, dan pemrosesan bahasa alami

c. Contoh: Sistem catur Deep Blue yang mengalahkan Garry

Kasparov (1997)

2. Machine Learning (ML)

a. Definisi: Menurut (Tom M. Mitchell, 1997) ML adalah bidang

studi yang memberikan kemampuan pada komputer untuk belajar

tanpa diprogram secara eksplisit

b. Cakupan: Algoritma supervised learning, unsupervised learning,

dan reinforcement learning

c. Karakteristik: Memerlukan feature engineering manual, bekerja

dengan dataset yang lebih kecil

d. Contoh: Algoritma decision tree untuk klasifikasi, SVM untuk

regresi

3. Deep learning (DL)

a. Definisi: Menurut (Lecun et al., 2015), DL adalah subset ML yang

menggunakan multiple layers untuk secara progresif mengekstrak

12

fitur-fitur level tinggi dari raw input

b. Cakupan: Jaringan saraf dalam, convolutional neural networks,

recurrent neural networks

c. Karakteristik: Dapat belajar feature representation secara

otomatis, memerlukan data dalam jumlah besar

d. Contoh: AlphaGo yang mengalahkan champion Go dunia (2016)

Menurut (Goodfellow et al., 2016), perbedaan mendasar terletak pada:

1. Kompleksitas fitur: DL mampu menangkap fitur yang lebih abstrak

dan hierarkis

2. Feature engineering: ML membutuhkan feature engineering manual,

sedangkan DL belajar fitur secara otomatis

3. Kebutuhan data: DL memerlukan dataset yang jauh lebih besar untuk

training yang efektif

4. Kebutuhan komputasi: DL membutuhkan resources komputasi yang

lebih intensif

Hubungan ketiganya dapat digambarkan sebagai lingkaran

konsentris dimana AI ⊃ ML ⊃ DL, dengan DL menjadi pendorong utama

kemajuan AI modern berkat kemampuannya dalam menangani data yang

kompleks dan tidak terstruktur.

 Figure 3.1 Diagram Venn

13

Table 3.1 Perbandingan AI, ML dan DL

Aspek Artificial Intelligence

(AI)

Machine

Learning

Deep learning

Definisi Sistem yang dapat

melakukan tugas seperti

manusia

Subset AI yang

belajar dari data

Subset ML

dengan jaringan

saraf tiruan

Pendekatan System berbasis aturan

hingga pembelajaran

Algoritma

statistic belajar

dari data

Jaringan neural

dalam belajar

fitur otomatis

Data Tidak selalu butuh data

besar

Butuh data

terstruktur

menengah

Butuh data

sangat besar

Contoh Siri, Alexa, robotika SVM, Decision

Tree

CNN, RNN,

Transformers

Aplikasi Game AI, chatbot

sederhana

Filter spam Pengenalan

gambar, NLP

Pemahaman hierarkis ini menjadi dasar pemilihan Deep learning sebagai

pendekatan dalam kerja praktik ini, karena tugas klasifikasi gambar

kendaraan memerlukan kemampuan untuk mempelajari fitur-fitur hierarkis

dan kompleks secara otomatis dari data citra, yang merupakan keunggulan

utama DL dibanding ML konvensional.

3.2 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) atau Jaringan Saraf Konvolusional

merupakan arsitektur deep learning yang dominan dalam pemrosesan data grid

seperti gambar. Arsitektur ini terinspirasi dari organisasi visual cortex pada otak

binatang (Hubel & Wiesel, 1962) dan dirancang untuk mempelajari hierarki fitur

secara otomatis sambil mempertahankan konteks spasialnya. Keunggulan utama

CNN, seperti yang dijelaskan oleh (LeCun Y. et al., 1998), terletak pada tiga

properti arsitekturalnya: sparse connectivity, yang membatasi koneksi neuron

hanya pada wilayah lokal (local receptive field); weight sharing, di mana filter

yang sama digunakan pada seluruh area input untuk mendeteksi pola tertentu

sehingga mengurangi parameter secara signifikan (Goodfellow et al., 2016);

dan hierarchical learning, di mana lapisan awal belajar fitur rendah (seperti tepi

dan tekstur) yang kemudian digabungkan di lapisan dalam menjadi fitur tinggi

yang lebih (Krizhevsky et al., n.d.). Proses ini umumnya diperkuat dengan

14

lapisan pooling (misalnya max-pooling) untuk menciptakan invariansi terhadap

translasi dan distorsi kecil serta mengurangi dimensi komputasi (Scherer et al.,

2010). Keberhasilan praktis CNN modern dipopulerkan oleh (Krizhevsky et al.,

n.d.) melalui model AlexNet yang memenangkan kompetisi ImageNet, dan sejak

itu varian seperti VGG, ResNet, dan Transformer-based Vision menjadi tulang

punggung dalam bidang computer vision, mulai dari pengenalan objek hingga

segmentasi medis.

3.2.1 Arsitektur Dasar CNN - Jaringan khusus pemrosesan gambar

Convolutional Neural Network (CNN) dirancang khusus untuk

pemrosesan gambar dengan arsitektur yang meniru sistem penglihatan

biologis. Arsitektur dasar CNN terdiri dari beberapa komponen utama yang

bekerja secara hierarkis untuk mengekstrak fitur dari gambar. Menurut

(LeCun Y. et al., 1998), arsitektur CNN modern typically terdiri dari lapisan

konvolusi, lapisan aktivasi, lapisan pooling, dan lapisan fully connected.

Lapisan Konvolusi (Convolutional Layer) merupakan inti dari CNN

dimana filter-filter konvolusi diaplikasikan untuk mendeteksi pola-pola

lokal dalam gambar. Setiap filter bertugas mengenali fitur tertentu seperti

tepi, sudut, atau tekstur. Proses konvolusi ini mempertahankan hubungan

spasial antar piksel sambil membagi parameter yang sama di seluruh bagian

gambar (Goodfellow et al., 2016).

Lapisan Aktivasi (Activation Layer) biasanya menggunakan fungsi

ReLU (Rectified Linear Unit) untuk memperkenalkan non-linearitas ke

dalam jaringan. Fungsi ini membantu jaringan mempelajari hubungan yang

lebih kompleks dalam data (Krizhevsky et al., n.d.).

Lapisan Pooling berfungsi untuk mengurangi dimensi spasial

representasi fitur sambil mempertahankan informasi yang paling penting.

Max-pooling adalah teknik yang paling umum digunakan, dimana hanya

nilai maksimum dari setiap region yang dipilih (Scherer et al., 2010).

Lapisan Fully Connected di akhir arsitektur bertugas untuk

melakukan klasifikasi berdasarkan fitur-fitur yang telah diekstrak oleh

lapisan-lapisan sebelumnya. Seluruh neuron pada lapisan ini terhubung ke

15

semua neuron di lapisan sebelumnya (LeCun Y. et al., 1998)

Arsitektur ini memungkinkan CNN belajar fitur-fitur dari yang

sederhana hingga kompleks secara hierarkis, membuatnya sangat efektif

untuk tugas-tugas computer vision seperti klasifikasi gambar, deteksi objek,

dan segmentasi semantik.

Figure 3.2 Arsitektur CNN

3.2.2 Layer-layer dalam CNN - Konvolusi, Pooling, Fully Connected

1. Lapisan Konvolusi (Convolutional Layer)

Lapisan konvolusi merupakan komponen fundamental dalam CNN

yang berfungsi untuk mengekstraksi fitur dari gambar input. Menurut

(LeCun Y. et al., 1998), lapisan ini menggunakan sejumlah filter

(kernel) yang melakukan operasi konvolusi dengan menggeser seluruh

area input.

Rumus Operasi Konvolusi:

𝑌{𝑖,𝑗} = (𝑋 ∗ 𝑊){𝑖,𝑗} = ∑ ∑ 𝑋{𝑖+𝑚,𝑗+𝑛}

𝑛𝑚

⋅ 𝑊{𝑚,𝑛} + 𝑏

Di mana:

a. 𝑌{𝑖,𝑗} = output pada posisi {𝑖, 𝑗}

b. 𝑋 = input feature map

c. 𝑊 = filter/kernel konvolusi

d. 𝑏 = bias term

e. ∑∑ = penjumlahan ganda seukuran kernel

Setiap filter bertugas mendeteksi pola spesifik seperti tepi, sudut, atau

tekstur tertentu. Proses konvolusi menghasilkan feature maps yang

16

merepresentasikan respons filter terhadap berbagai bagian gambar.

Keunggulan utama lapisan ini adalah parameter sharing, dimana filter

yang sama digunakan di seluruh bagian gambar, sehingga secara

signifikan mengurangi jumlah parameter yang harus dipelajari

(Goodfellow et al., 2016).

2. Lapisan Pooling (pooling Layer)

Lapisan pooling berfungsi untuk mengurangi dimensi spasial dari

feature maps sambil mempertahankan fitur-fitur yang paling

informatif. Menurut (Scherer et al., 2010), max-pooling merupakan

teknik yang paling umum digunakan.

Rumus Max Pooling:

𝑌{𝑖,𝑗} = 𝑚𝑎𝑥(𝑋{𝑖×𝑠∶ 𝑖×𝑠 + 𝑘,; 𝑗×𝑠∶ 𝑗×𝑠 + 𝑘})

Di mana:

a. 𝑠 = stride (langkah pergeseran)

b. 𝑘 = ukuran kernel pooling

c. 𝑚𝑎𝑥 = operasi pencarian nilai maksimum

Lapisan ini memberikan beberapa keuntungan penting: pertama,

mengurangi komputasi dengan menurunkan dimensi data; kedua,

membuat representasi fitur lebih invariant terhadap translasi kecil dan

distorsi; ketiga, membantu mencegah overfitting dengan mengurangi

jumlah parameter (Krizhevsky et al., n.d.).

3. Lapisan Aktivasi ReLU

Fungsi aktivasi ReLU biasanya diterapkan setelah operasi konvolusi

untuk memperkenalkan non-linearitas.

Rumus Fungsi ReLU:

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)

4. Lapisan Fully Connected (Fully Connected Layer)

Lapisan fully connected biasanya ditempatkan di akhir arsitektur CNN

dan berfungsi untuk melakukan klasifikasi berdasarkan fitur-fitur yang

telah diekstrak. Pada lapisan ini, setiap neuron terhubung ke semua

neuron di lapisan sebelumnya, mirip dengan jaringan saraf tradisional

17

(LeCun Y. et al., 1998).

Rumus Fully Connected:

𝑧 = 𝑊 ⋅ 𝑎 + 𝑏

Di mana:

a. 𝑊 = weight matrix

b. 𝑎 = input vector dari lapisan sebelumnya

c. 𝑏 = bias term

d. 𝑧 = output sebelum aktivasi

Keempat komponen utama ini bekerja secara sinergis. Lapisan

konvolusi mengekstraksi fitur hierarkis, fungsi aktivasi (seperti ReLU)

memperkenalkan non-linearitas, lapisan pooling mereduksi dimensi dan

meningkatkan invariansi, serta lapisan fully connected melakukan

interpretasi akhir dengan fungsi softmax untuk klasifikasi.

Pemahaman mendetail tentang fungsi dan operasi matematis setiap

layer dalam CNN ini menjadi landasan untuk menganalisis

arsitektur MobileNetV2 yang digunakan, serta untuk melakukan proses fine-

tuning yang optimal pada model.

3.3 Transfer Learning

Transfer Learning (Transfer Pembelajaran) adalah teknik dalam deep

learning di mana model yang telah dilatih sebelumnya (pre-trained model) pada

dataset besar digunakan sebagai titik awal untuk menyelesaikan tugas yang serupa

atau terkait (Pan & Yang, 2010). Pendekatan ini memanfaatkan pengetahuan yang

telah dipelajari model dari data sebelumnya, sehingga mengurangi kebutuhan data

pelatihan dan waktu komputasi yang signifikan (Weiss et al., 2016). Dalam

konteks klasifikasi gambar, model seperti MobileNetV2, yang telah dilatih pada

dataset ImageNet yang berisi jutaan gambar, dapat diadaptasi untuk mengenali

objek spesifik seperti kendaraan dengan melakukan pelatihan ulang (fine-tuning)

pada lapisan tertentu.

Konsep dasar transfer learning didasarkan pada asumsi bahwa fitur-fitur

yang dipelajari pada tugas sumber (source task) dapat ditransfer ke tugas target

(target task) yang memiliki karakteristik serupa (Weiss et al., 2016). Dalam

18

klasifikasi gambar, lapisan awal model pre-trained umumnya telah belajar

mendeteksi fitur rendah seperti tepi, sudut, dan tekstur, yang bersifat generik dan

dapat diterapkan pada berbagai jenis gambar (Yosinski et al., 2014). Sementara

itu, lapisan yang lebih dalam menangkap fitur tingkat tinggi yang lebih spesifik

terhadap dataset asli.

1. Keunggulan transfer learning meliputi:

a. Efisian Data: Tidak memerlukan dataset yang sangat besar karena model

telah mempelajari fitur dasar dari dataset sumber (Tan et al., 2018).

b. Efisiensi Waktu: Waktu pelatihan lebih singkat dibandingkan melatih

model dari awal (from scratch) (Huh et al., 2016).

c. Kinerja yang Lebih Baik: Model pre-trained yang sudah konvergen pada

dataset besar memberikan initial weight yang baik, seringkali

menghasilkan akurasi yang lebih tinggi pada dataset target, terutama

ketika dataset target terbatas (Kornblith et al., 2019).

d. Sumber Daya Komputasi yang Lebih Rendah: Mengurangi kebutuhan

GPU dan daya komputasi karena tidak perlu melatih seluruh arsitektur dari

awal (Howard & Ruder, 2018).

2. Terdapat dua pendekatan umum dalam menerapkan transfer learning:

a. Feature Extraction: Lapisan konvolusi model pre-trained digunakan

sebagai ekstraktor fitur yang tetap (fixed feature extractor). Hanya

lapisan classifier (biasanya lapisan fully connected di akhir) yang diganti

dan dilatih ulang menggunakan dataset target (Sharif et al., 2014).

b. Fine-Tuning: Setelah melakukan feature extraction, beberapa lapisan

konvolusi terakhir dari model pre-trained juga "dilonggarkan" (unfreeze)

dan dilatih ulang bersama dengan classifier baru pada dataset target

(Donahue et al., 2014). Ini memungkinkan model untuk menyesuaikan

fitur tingkat tingginya agar lebih spesifik terhadap tugas baru.

Pada penelitian ini, pendekatan transfer learning diterapkan dengan

menggunakan model MobileNetV2 yang telah dilatih sebelumnya pada

dataset ImageNet (Sandler et al., 2018). Lapisan classifier asli diganti dengan

lapisan baru yang disesuaikan untuk klasifikasi empat jenis kendaraan (truk,

19

mobil, motor, bus). Selanjutnya, dilakukan proses fine-tuning pada sebagian

lapisan konvolusi untuk mengoptimalkan kinerja model pada dataset kendaraan

CV. Indah Jaya Sentosa.

Figure 3.3 Diagram Transfer Learning

Diagram diatas mengilustrasikan proses transfer learning yang diterapkan

dalam penelitian ini. Proses dimulai dengan model pre-trained MobileNetV2 yang

telah dilatih pada dataset ImageNet (Deng et al., 2009). Lapisan classifier asli

dihapus dan diganti dengan arsitektur baru yang terdiri dari global average

pooling dan lapisan dense dengan 4 neuron output sesuai dengan kelas kendaraan

target (Sandler et al., 2018).

Proses fine-tuning kemudian dilakukan dengan menggunakan dataset

kendaraan CV. Indah Jaya Sentosa, dimana hanya lapisan tertentu yang dilatih

ulang untuk mengadaptasi model ke tugas klasifikasi kendaraan spesifik

(Yosinski et al., 2014). Pendekatan ini memungkinkan model memanfaatkan

pengetahuan yang telah dipelajari dari dataset besar sambil menyesuaikan diri

dengan karakteristik dataset target.

Keuntungan proses ini:

20

a. Waktu pelatihan lebih cepat

b. Kebutuhan data lebih sedikit

c. Kinerja klasifikasi yang lebih optimal

Diagram ini mempresentasikan alur sistematis yang diterapkan untuk

mengembangkan sistem klasifikasi kendaraan berbasis deep learning pada

CV. Indah Jaya Sentosa.

3.3.1 Konsep Transfer Learning

Konsep dasar transfer learning dalam konteks deep learning adalah

memanfaatkan model yang telah dilatih sebelumnya (pre-trained model)

pada dataset berskala besar seperti ImageNet, yang berisi lebih dari 14 juta

gambar dengan 1000 kelas (Deng et al., 2009). Model ini telah mempelajari

representasi fitur visual yang kaya dan hierarkis, mulai dari fitur rendah

seperti tepi dan tekstur, hingga fitur tinggi yang spesifik seperti bentuk objek

dan bagian-bagiannya (Yosinski et al., 2014).

Dalam pendekatan ini, arsitektur model beserta bobot yang telah

diperoleh selama pelatihan sebelumnya dipertahankan, sementara lapisan

klasifikasi akhir dimodifikasi untuk disesuaikan dengan tugas yang baru.

Menurut (Tan et al., 2018), terdapat beberapa alasan mendasar mengapa

pendekatan ini efektif:

1. Fitur Umum yang Dapat Ditransfer: Lapisan konvolusi awal dalam

CNN cenderung mempelajari fitur-fitur umum seperti detector tepi,

blob, dan tekstur yang relevan untuk hampir semua tugas visi

komputer.

2. Hirarki Fitur yang Dipelajari: Lapisan yang lebih dalam mempelajari

fitur yang semakin spesifik, namun masih dapat digunakan untuk

tugas-tugas yang mirip dengan dataset asli.

3. Efisiensi Komputasi: Dengan menggunakan bobot yang telah dilatih

sebelumnya, proses konvergensi menjadi lebih cepat dibandingkan

dengan inisialisasi acak.

Pada penelitian ini, model MobileNetV2 (Sandler et al., 2018) yang

telah dilatih pada ImageNet dipilih sebagai dasar untuk sistem

21

klasifikasi kendaraan. Pemilihan ini didasarkan pada efisiensi

komputasi dan ukuran model yang ringan, sehingga cocok untuk

aplikasi real-time.

4. Proses Adaptasi model:

a. Lapisan fully connected akhir dari model asli dihapus

b. Ditambahkan lapisan global average pooling

c. Lapisan klasifikasi baru dengan 4 neuron output (sesuai kelas

kendaraan: truk, mobil, motor, bus) ditambahkan

d. Hanya lapisan klasifikasi yang dilatih pada tahap awal, sementara

lapisan konvolusi dibekukan (frozen)

Pendekatan ini memungkinkan sistem memanfaatkan pengetahuan

yang telah dipelajari model dari dataset besar, sementara tetap dapat

beradaptasi dengan tugas spesifik klasifikasi kendaraan pada CV. Indah Jaya

Sentosa.

3.3.2 Keuntungan Menggunakan Model Pre-trained

Penggunaan model pre-trained dalam transfer learning

memberikan beberapa keuntungan signifikan dibandingkan dengan

pelatihan model dari awal (from scratch). Menurut (Weiss et al., 2016),

keuntungan-keuntungan tersebut meliputi:

1. Pengurangan Kebutuhan Data

Model pre-trained telah mempelajari fitur-fitur dasar dari dataset yang

sangat besar, sehingga memungkinkan pelatihan yang efektif

meskipun dengan dataset target yang terbatas (Huh et al., 2016). Pada

konteks penelitian ini, dataset kendaraan CV. Indah Jaya Sentosa yang

relatif kecil dapat dimanfaatkan secara optimal tanpa perlu

mengumpulkan puluhan ribu gambar baru.

2. Efisiensi Waktu Pelatihan

Proses konvergensi model menjadi lebih cepat karena inisialisasi

bobot sudah mendekati solusi optimal. Menurut (Kornblith et al.,

2019), model pre-trained dapat mencapai kinerja yang baik dalam

epoch pelatihan yang lebih sedikit dibandingkan inisialisasi acak.

22

3. Kinerja yang Lebih Baik

Model yang diinisialisasi dengan bobot pre-trained cenderung

mencapai akurasi yang lebih tinggi dan generalisasi yang lebih baik

(Yosinski et al., 2014). Hal ini terutama penting untuk dataset dengan

variasi terbatas seperti dalam klasifikasi kendaraan.

4. Stabilitas Pelatihan

Inisialisasi dengan bobot pre-trained memberikan stabilitas numerik

selama pelatihan, mengurangi masalah seperti vanishing/exploding

gradients (Tan et al., 2018).

5. Efisiensi Komputasi

Mengurangi kebutuhan sumber daya komputasi karena tidak perlu

melatih seluruh arsitektur dari awal (Howard & Ruder, 2018). Hal ini

sangat menguntungkan untuk penerapan di lingkungan dengan sumber

daya terbatas.

6. Transfer Pengetahuan Silang

Model dapat mentransfer pengetahuan dari domain sumber

(ImageNet) ke domain target (kendaraan) meskipun terdapat

perbedaan karakteristik (Pan & Yang, 2010).

Dalam implementasi sistem klasifikasi kendaraan ini, penggunaan

MobileNetV2 pre-trained memungkinkan pencapaian akurasi di atas 90%

dengan dataset pelatihan yang relatif kecil, serta waktu inferensi yang cepat

untuk aplikasi real-time.

3.4 MobileNetV2

MobileNetV2 merupakan pengembangan dari MobileNetV1 yang

diperkenalkan oleh Google dengan fokus pada peningkatan efisiensi model untuk

perangkat mobile. Arsitektur ini menggunakan dua konsep utama yaitu inverted

residuals dan linear bottlenecks yang memungkinkan model menjadi lebih ringan

dan cepat tanpa mengorbankan akurasi secara signifikan.

Inverted Residuals menyelesaikan masalah pada residual block tradisional

dengan membalik urutan operasi: dari kompresi-ekspansi menjadi ekspansi-

23

kompresi. Pada inverted residual, input pertama kali diekspansi dengan konvolusi

1×1, kemudian dilakukan depthwise convolution 3×3, dan terakhir dikompresi

dengan konvolusi 1×1. Pendekatan ini mempertahankan lebih banyak informasi

selama transformasi fitur.

Linear Bottlenecks mengatasi masalah hilangnya informasi pada dimensi

rendah yang disebabkan oleh fungsi aktivasi ReLU. Dengan menggunakan fungsi

linear pada layer bottleneck terakhir, MobileNetV2 mencegah kerusakan informasi

dalam ruang dimensi rendah, sehingga mempertahankan kualitas fitur yang

dihasilkan.

Kombinasi kedua teknik tersebut membuat MobileNetV2 sangat cocok

untuk aplikasi klasifikasi gambar dan deteksi objek real-time pada perangkat

mobile. Model ini mencapai trade-off optimal antara akurasi dan kecepatan,

dengan parameter 30% lebih sedikit dibanding MobileNetV1 namun dengan

akurasi yang lebih tinggi. Keunggulan ini membuat MobileNetV2 banyak diadopsi

dalam berbagai aplikasi computer vision pada perangkat dengan sumber daya

terbatas.

Figure 3.4 Arsitektur MobileNetV2

3.4.1 Arsitektur dan Keunggulan - Ringan untuk Perangkat Mobile

MobileNetV2 memiliki arsitektur yang secara khusus dirancang

untuk optimasi pada perangkat mobile dengan sumber daya komputasi

terbatas. Arsitektur ini dibangun berdasarkan dua inovasi fundamental:

1. Inverted Residual Blocks

24

Blok ini merupakan penyempurnaan dari residual block tradisional

dengan membalik aliran dimensi. Strukturnya terdiri dari:

a. Ekspansi: Konvolusi 1×1 untuk meningkatkan dimensi channel

(biasanya ekspansi 6x)

b. Depthwise Convolution: Konvolusi 3×3 yang beroperasi secara

terpisah pada setiap channel

c. Proyeksi: Konvolusi 1×1 untuk mengecilkan kembali dimensi

channel

Berbeda dengan residual block konvensional yang mengecilkan

dimensi terlebih dahulu, inverted residual justru memperluas

representasi fitur sebelum melakukan operasi konvolusi depthwise,

sehingga mempertahankan lebih banyak informasi selama proses

transformasi.

Figure 3.5 Arsitektur Inverted Residual Block

2. Linear Bottlenecks

Konsep ini mengatasi masalah yang timbul dari penggunaan fungsi

aktivasi ReLU pada dimensi rendah. Pada ruang berdimensi rendah,

ReLU dapat menyebabkan hilangnya informasi yang irreversibel.

MobileNetV2 mengatasi ini dengan:

a. Menggunakan fungsi aktivasi linear pada layer bottleneck terakhir

b. Mencegah kerusakan informasi dalam subspace berdimensi

rendah

25

c. Mempertahankan kapasitas representasi model

3. Keunggulan untuk Perangkat Mobile

a. Efisiensi Parameter: MobileNetV2 menggunakan 30% lebih sedikit

parameter dibandingkan MobileNetV1, dengan 3.4 juta parameter

pada konfigurasi standar.

b. Kecepatan Inferensi: Menggunakan depthwise separable

convolution yang mengurangi operasi komputasi hingga 8-9 kali

dibanding konvolusi standar.

c. Konsumsi Daya Rendah: Optimasi arsitektur memungkinkan

operasi yang lebih efisien dalam penggunaan daya baterai

perangkat mobile.

d. Akurasi Terjaga: Meskipun ringan, model ini mempertahankan

akurasi yang kompetitif untuk berbagai tugas vision, dengan

mencapai 72.0% top-1 accuracy pada ImageNet dataset.

3.4.2 Aplikasi dalam Klasifikasi Gambar - Deteksi Objek Real-time

MobileNetV2 telah menjadi fondasi utama untuk berbagai aplikasi

klasifikasi gambar dan deteksi objek real-time berkat efisiensi

komputasinya yang tinggi. Aplikasi-aplikasi ini memanfaatkan kemampuan

MobileNetV2 dalam memproses data visual dengan cepat dan akurat pada

perangkat berdaya terbatas.

1. Integrasi dengan Detektor Objek Modern

MobileNetV2 umumnya digunakan sebagai backbone feature

extractor yang dikombinasikan dengan detektor objek seperti:

A. SSD (Single Shot MultiBox Detector)

a. MobileNetV2-SSD memberikan kecepatan deteksi >30 FPS

pada smartphone

b. Cocok untuk aplikasi real-time dengan akurasi memadai

c. Digunakan dalam deteksi wajah, kendaraan, dan objek sehari-

hari

B. YOLO (You Only Look Once)

a. MobileNetV2 sebagai pengganti backbone konvensional

26

YOLO

b. Mengurangi komputasi secara signifikan sambil

mempertahankan akurasi

c. Ideal untuk aplikasi mobile dengan kebutuhan kecepatan

tinggi

2. Aplikasi Real-world

A. Deteksi Objek dalam Video Real-time

a. Pemrosesan frame-by-frame dengan latency rendah

b. Aplikasi keamanan dan surveillance pada perangkat mobile

c. Analisis video live streaming untuk konten otomatis

B. Augmented Reality (AR)

a. Deteksi dan pelacakan objek untuk overlay digital

b. Aplikasi retail: virtual try-on, product recognition

c. Gaming intercative yang responsife

C. Kendaraan Otonom dan ADAS (Advanced Driver Assistance

System)

a. Deteksi pejalan kaki, kendaraan, rambu lalu lintas

b. Pemrosesan real-time pada embedded systems

c. Sistem peringatan dini pada kendaraan

D. Kinerja dan Optimasi

Pada test benchmark, MobileNetV2 mencapai;

a. Kecepatan: 25-40 ms per inference pada GPU mobile

b. Akurasi: 72-75% top-1 accuracy pada ImageNet

c. Efisiensi: Konsumsi memori <10MB untuk model terkompresi

3.5 Telegram Bot API

Telegram Bot API merupakan sebuah antarmuka pemrograman aplikasi

yang memungkinkan pengembang perangkat lunak untuk membuat dan

mengelola program otomatis (bot) yang dapat berinteraksi dengan pengguna di

dalam platform Telegram. Konsep dasarnya berpusat pada arsitektur client-server

di mana bot, yang diidentifikasi dengan token autentikasi yang unik,

berkomunikasi dengan server Telegram melalui metode webhook atau long

27

polling untuk mengirim dan menerima pesan. Webhook berfungsi sebagai

mekanisme notifikasi real-time, di mana server Telegram secara proaktif

mengirimkan update (seperti pesan dari pengguna) ke URL endpoint yang telah

ditentukan, sehingga memungkinkan respons yang cepat dan efisien. Sementara

itu, long polling merupakan metode alternatif di mana bot secara periodik

menanyakan (polling) server untuk memeriksa apakah ada update baru. Melalui

API ini, sebuah bot dapat melakukan berbagai fungsi inti, mulai dari mengelola

percakapan pribadi, grup, hingga saluran (channel), mengirimkan berbagai jenis

konten seperti teks, gambar, dan dokumen, serta menyediakan antarmuka

interaktif bagi pengguna melalui keyboard kustom dan tombol inline.

Figure 3.6 Diagram alur Telegram Bot API

Konsep webhook dan arsitektur messaging yang dijelaskan di atas

diimplementasikan secara langsung dalam sistem untuk memastikan notifikasi

klasifikasi kendaraan dapat terkirim secara real-time dan andal kepada petugas

keamanan dan admin.

3.5.1 Konsep Webhook dan Messaging

1. Konsep Webhook

Webhook merupakan mekanisme callback HTTP yang memungkinkan

aplikasi menerima data secara real-time dari sumber eksternal. Dalam

konteks Telegram Bot API, webhook berfungsi sebagai endpoint URL

yang ditentukan developer untuk menerima update pesan secara

28

otomatis dari server Telegram. Webhook menggunakan paradigma

push notification dimana server Telegram secara proaktif

mengirimkan data ke endpoint yang telah ditentukan setiap kali

terdapat event baru, seperti pesan masuk atau interaksi pengguna.

Implementasi webhook menghilangkan kebutuhan untuk continuously

polling server, sehingga mengurangi latency dan konsumsi resource.

Konfigurasi webhook mengharuskan developer menyediakan URL

HTTPS yang valid dengan sertifikat SSL, dimana server Telegram

akan mengirimkan payload JSON berisi update melalui metode POST.

2. Konsep Messaging

Messaging dalam Telegram Bot API mengacu pada pertukaran data

terstruktur antara bot dan pengguna melalui berbagai format

konten. Sistem messaging Telegram mendukung multiplexing content

types termasuk text, gambar, video, dokumen, lokasi, dan konten

interaktif. Setiap pesan dikemas dalam objek JSON yang mengandung

metadata seperti chat ID, timestamp, user information, dan content

payload. Arsitektur messaging Telegram mengimplementasikan

queue management system dengan garansi delivery dan mekanisme

retry untuk memastikan reliabilitas pesan. Model messaging ini

memungkinkan bot untuk mengirim pesan secara asinkronus,

mendukung inline keyboards, serta mengelola threaded conversations

dalam grup dan channel.

3. Integrasi Webhook dan Messaging

Integrasi antara webhook dan messaging membentuk siklus

komunikasi real-time dimana webhook berperan sebagai input channel

dan messaging sebagai output channel. ketika pengguna mengirim

pesan ke bot, server Telegram mem-forward payload tersebut ke

webhook endpoint, kemudian bot memproses permintaan dan

mengirim respons balik melalui messaging API. Integrasi ini

mencapai average latency di bawah 100ms untuk pesan teks standar,

dengan throughput mencapai ribuan pesan per detik pada skala

29

enterprise.

3.5.2 Integrasi dengan Aplikasi External

1. Konsep Integrasi dengan Aplikasi External

Integrasi Telegram Bot dengan aplikasi external merupakan

paradigma dimana bot berfungsi sebagai interface yang

menghubungkan pengguna Telegram dengan sistem eksternal melalui

API gateway. Integrasi ini memanfaatkan bot sebagai middleware

yang menerima perintah dari pengguna, meneruskannya ke sistem

eksternal, dan mengembalikan respons ke pengguna. Implementasi bot

modern mengintegrasikan minimal tiga sistem eksternal berbeda,

dengan pola arsitektur yang umum adalah microservices-based API

composition.

2. Metode Integrasi

RESTful API Integration menjadi pendekatan paling dominan bot

mengonsumsi REST endpoints dari aplikasi external menggunakan

HTTP methods. Implementasi mencakup authentication mechanisms

seperti OAuth 2.0, API keys, dan JWT tokens untuk mengamankan

komunikasi antara bot dan sistem eksternal. Implementasi rate

limiting, request signing, dan encrypted payload untuk mencegah

security breaches.

Webhook-based Event Processing memungkinkan integrasi real-time

dengan sistem eksternal. Bot dapat dikonfigurasi untuk menerima

webhook calls dari aplikasi external, memungkinkan notifikasi

proaktif dan event-driven interactions. pola ini mengurangi latency

hingga 60% dibanding traditional polling methods.

3. Aplikasi dan Use Cases

Dalam sektor e-commerce, integrasi bot dengan payment gateways,

inventory management systems, dan order processing platforms. Bot

berfungsi sebagai conversational interface yang memproses orders,

mengecek ketersediaan produk, dan mengelola transaksi pembayaran

30

secara real-time.

Di bidang customer service, integrasi dengan CRM systems seperti

Salesforce dan HubSpot, dimana bot menangani tier-1 support

inquiries, membuat support tickets, dan menyinkronkan conversation

history dengan customer database.

Untuk automation workflows, Enterprise integrasi dengan tools

seperti Zapier, IFTTT, dan custom internal systems untuk

mengotomasi business processes seperti approval workflows,

notification systems, dan data synchronization across platforms.

4. Arsitektur dan Best Practices

Arsitektur hybrid yang menggabungkan webhook dan API calls

direkomendasikan untuk menyeimbangkan beban real-time

processing dan batch operations. Implementasi circuit breaker pattern

dan retry mechanisms penting untuk menjaga reliability.

3.6 Computer Vision untuk Klasifikasi Kendaraan

Berdasarkan survei komprehensif oleh (Berwo et al., 2023) mengenai

teknik deep learning untuk deteksi dan klasifikasi kendaraan dari

gambar/video, computer vision (CV) telah membuktikan diri sebagai teknologi

kunci dalam sistem klasifikasi kendaraan otomatis. Survei tersebut

mengungkapkan bahwa implementasi CV berbasis deep learning tidak hanya

mampu mencapai akurasi tinggi dalam beberapa kasus bahkan melampaui 95%

pada dataset standar tetapi juga menunjukkan kemajuan signifikan dalam hal

efisiensi komputasi dan keandalan di berbagai kondisi lingkungan. Perkembangan

terbaru dalam bidang ini didominasi oleh arsitektur CNN modern, di

mana EfficientNet dilaporkan mencapai akurasi 96,2%, sementara MobileNetV2

yang juga menjadi pilihan dalam penelitian ini tetap kompetitif dengan akurasi

94,7% serta keunggulan dalam efisiensi komputasi. Temuan ini memperkuat

pendekatan transfer learning yang memanfaatkan model pre-trained pada

ImageNet, yang terbukti secara signifikan meningkatkan kinerja klasifikasi,

khususnya ketika dataset yang tersedia terbatas atau tidak terlalu beragam.

Selain aspek akurasi, survei tersebut juga menggarisbawahi pentingnya

31

optimasi untuk aplikasi real-time. MobileNetV2 disebutkan mampu mencapai

kecepatan inferensi hingga 47 FPS pada perangkat keras NVIDIA Jetson Nano,

dengan tetap mempertahankan akurasi di atas 90%. Hal ini menjadikannya salah

satu arsitektur pilihan untuk sistem yang membutuhkan keseimbangan antara

ketepatan dan kecepatan pemrosesan. Namun, sejumlah tantangan masih menjadi

perhatian, seperti variasi kondisi pencahayaan dan cuaca, oklusi parsial,

perbedaan intra-kelas yang lebar, serta kebutuhan akan dataset yang lebih

representatif. Untuk mengatasi hal tersebut, sejumlah solusi seperti augmentasi

data yang komprehensif, pelatihan multi-skala, dan pendekatan ensemble

learning telah diusulkan dan diuji dalam berbagai studi terkini.

Evaluasi kinerja sistem klasifikasi kendaraan, menurut survei ini,

umumnya mengacu pada sejumlah metrik utama, termasuk akurasi di atas 90%

untuk aplikasi praktis, latensi di bawah 100 ms untuk aplikasi real-time, serta

konsistensi dan ketahanan terhadap variasi input. Di sisi lain, integrasi sistem

klasifikasi dengan platform notifikasi dan pemantauan real-time semakin menjadi

tren, di mana kombinasi antara kemampuan klasifikasi yang akurat dan sistem

notifikasi yang responsif menjadi penentu keberhasilan implementasi di

lingkungan industri, termasuk dalam konteks pengawasan kendaraan pada CV.

Indah Jaya Sentosa.

3.6.1 Konsep Object Recognition

Object recognition merupakan cabang fundamental dalam computer

vision yang bertujuan untuk mengidentifikasi dan mengklasifikasikan objek dalam

gambar atau video ke dalam kategori tertentu. Konsep ini melibatkan serangkaian

proses kompleks mulai dari deteksi objek, ekstraksi fitur, hingga klasifikasi

berdasarkan karakteristik visual yang dimiliki. Menurut penelitian terbaru oleh (Li

et al., 2021), object recognition telah mengalami evolusi signifikan dari metode

tradisional berbasis hand-crafted features menuju pendekatan deep learning yang

mampu belajar fitur secara otomatis dan hierarkis.

Konsep dasar object recognition mencakup kemampuan sistem untuk

32

memahami keberadaan objek dalam sebuah scene, menentukan lokasinya

melalui bounding box, serta mengidentifikasi kelas objek tersebut dengan tingkat

akurasi yang tinggi. Dalam konteks klasifikasi kendaraan, object recognition

memungkinkan sistem untuk membedakan berbagai jenis kendaraan berdasarkan

fitur-fitur spesifik seperti bentuk, ukuran, proporsi, dan karakteristik struktural

lainnya. Pendekatan modern menggunakan Convolutional Neural

Networks (CNN) telah membuktikan efektivitasnya dalam menangani variasi besar

dalam penampilan objek, perubahan kondisi pencahayaan, serta perbedaan sudut

pandang yang menjadi tantangan utama dalam object recognition.

3.6.2 Aplikasi Computer Vision (CV) dalam Sistem Transportasi

Berdasarkan penelitian terbaru oleh (Mehta & Shah, 2025) dalam

"Real-time Vehicle Detection and Classification Using Deep learning based

Approach" yang diterbitkan di Journal of Information Systems Engineering

and Management, aplikasi computer vision (CV) dalam sistem transportasi

telah menunjukkan kemajuan signifikan dalam hal akurasi dan kecepatan

pemrosesan. Penelitian ini mengimplementasikan pendekatan deep

learning untuk deteksi dan klasifikasi kendaraan secara real-time, dengan

hasil yang mengesankan dalam konteks sistem transportasi cerdas.

Studi tersebut berhasil mengembangkan sistem yang mampu

mendeteksi dan mengklasifikasikan kendaraan dengan akurasi mencapai

96.8% pada kondisi lalu lintas real-time. Arsitektur deep learning yang

digunakan terbukti efektif dalam mengidentifikasi berbagai jenis kendaraan,

termasuk mobil, sepeda motor, bus, dan truk, bahkan dalam kondisi

lingkungan yang menantang seperti cuaca buruk dan pencahayaan rendah.

Keberhasilan ini menunjukkan potensi besar CV dalam meningkatkan

efisiensi sistem transportasi perkotaan.

Dalam konteks manajemen lalu lintas, penelitian ini menunjukkan

bahwa sistem berbasis CV dapat memproses data visual dengan kecepatan

33

tinggi, mencapai 40-45 frame per second (FPS), sehingga memungkinkan

respon yang cepat terhadap perubahan kondisi lalu lintas. Sistem yang

dikembangkan juga mampu menganalisis kepadatan kendaraan dan pola

pergerakan lalu lintas, memberikan data yang berharga untuk optimasi

sistem kontrol lalu lintas adaptif.

Aplikasi praktis dari penelitian ini termasuk sistem pemantauan lalu

lintas otomatis, deteksi pelanggaran lalu lintas, dan analisis pola perjalanan

kendaraan. Implementasi sistem semacam ini dapat mengurangi kemacetan

hingga 25% melalui pengaturan sinyal lalu lintas yang lebih efisien. Selain

itu, sistem ini juga berkontribusi dalam peningkatan keselamatan jalan

dengan kemampuan mendeteksi potensi kecelakaan dan memberikan

peringatan dini.

Penelitian (Mehta & Shah, 2025) juga menyoroti integrasi sistem CV

dengan teknologi Internet of Things (IoT) untuk menciptakan ekosistem

transportasi yang terhubung. Kombinasi ini memungkinkan pertukaran data

yang seamless antara kendaraan, infrastruktur jalan, dan pusat kendali lalu

lintas, menciptakan sistem transportasi yang lebih responsif dan adaptif.

3.7 Evaluasi Model Deep learning

Evaluasi model deep learning merupakan tahap kritis dalam

pengembangan sistem klasifikasi kendaraan untuk memastikan keandalan dan

kesiapan model diterapkan dalam lingkungan produksi. Menurut penelitian

(Neupane et al., 2022) dalam "Real-time Vehicle Classification and Tracking

Using a Transfer Learning-Improved Deep learning Network", evaluasi

komprehensif terhadap model deep learning harus mencakup analisis berbagai

metrik performa untuk mendapatkan pemahaman menyeluruh tentang

kemampuan model dalam tugas klasifikasi kendaraan.

Penelitian tersebut mengimplementasikan pendekatan transfer

learning pada jaringan deep learning dan melakukan evaluasi mendalam

menggunakan metrik accuracy, precision, recall, dan F1-score. Hasil penelitian

menunjukkan bahwa model yang diimprovisasi dengan transfer

34

learning mencapai akurasi klasifikasi yang signifikan lebih tinggi dibandingkan

dengan model konvensional. (Neupane et al., 2022) menekankan bahwa akurasi

saja tidak cukup untuk mengevaluasi kinerja model secara komprehensif,

sehingga diperlukan analisis precision dan recall untuk setiap kelas kendaraan.

Analisis confusion matrix dalam penelitian tersebut mengungkapkan pola

kesalahan klasifikasi yang spesifik, di mana model mengalami kesulitan dalam

membedakan kendaraan dengan karakteristik visual yang mirip. Temuan ini

menyoroti pentingnya evaluasi mendetail untuk mengidentifikasi kelemahan

model dan area yang memerlukan perbaikan. Selain itu, penelitian ini juga

mengevaluasi kecepatan inferensi model untuk memastikan kesesuaian dengan

aplikasi real-time, dengan hasil menunjukkan bahwa model yang diusulkan

mampu memproses data secara efisien tanpa mengorbankan akurasi.

3.7.1 Metrik Akurasi, Precision, Recall

Evaluasi performa model klasifikasi dalam sistem pengenalan

kendaraan memerlukan berbagai metrik evaluasi yang dihitung

menggunakan rumus-rumus matematis tertentu. Berdasarkan penelitian

(Neupane et al., 2022), berikut adalah rumus-rumus fundamental untuk

menghitung metrik evaluasi model klasifikasi:

1. Akurasi

Akurasi mengukur persentase prediksi yang benar secara keseluruhan

dari total prediksi:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)

𝑇𝑃 = True Positive (prediksi positif yang benar)

𝑇𝑁 = True Negative (prediksi negatif yang benar)

𝐹𝑃 = False Positive (prediksi positif yang salah)

𝐹𝑁 = False Negative (prediksi negatif yang salah)

2. Precision

Precision mengukur proporsi prediksi positif yang benar:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

35

3. Recall

Recall mengukur kemampuan model dalam menemukan semua

instance positif:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

4. F1-Score

F1-Score merupakan rata-rata harmonik dari precision dan recall:

𝐹1 = 2 ×
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)

Dalam konteks klasifikasi multi-kelas seperti klasifikasi kendaraan (truk,

mobil, motor, bus), metrik-metrik ini dapat dihitung untuk setiap kelas

secara individual menggunakan pendekatan one-vs-rest, atau dihitung

sebagai rata-rata makro/mikro across semua kelas.

3.7.2 Confusion Matrix

Confusion matrix merupakan alat evaluasi fundamental dalam

klasifikasi yang memberikan gambaran komprehensif tentang performa

model dengan memvisualisasikan hasil prediksi terhadap label sebenarnya.

Menurut penelitian (Neupane et al., 2022), confusion matrix sangat penting

untuk menganalisis pola kesalahan klasifikasi dalam sistem pengenalan

kendaraan.

1. Struktur Confusion Matrix

Untuk masalah klasifikasi multi-kelas dengan empat jenis kendaraan

(truk, mobil, motor, bus), confusion matrix berbentuk matriks 4×4

yang menunjukkan:

a. Diagonal utama: Jumlah prediksi benar untuk setiap kelas

b. Off-diagonal: Jumlah kesalahan klasifikasi antar kelas

2. Analisis Pola Kesalahan

Confusion matrix mengungkapkan:

a. Kelas yang mudah dikenali: Nilai diagonal tinggi

36

b. Kelas yang sering tertukar: Nilai off-diagonal tinggi antara kelas

tertentu

c. Bias klasifikasi: Kecenderungan model mengklasifikasikan ke

kelas tertentu

3. Aplikasi dalam Klasifikasi Kendaraan

Pada sistem klasifikasi kendaraan, confusion matrix membantu

mengidentifikasi:

a. Kesulitan membedakan truk kecil dengan van

b. Kebingungan antara minibus dengan SUV

c. Kesalahan klasifikasi akibat sudut pandang kamera

4. Manfaat untuk Perbaikan Model

Berdasarkan analisis confusion matrix, pengembangan model dapat

difokuskan pada:

a. Penambahan data training untuk kelas yang sering salah

b. Optimasi feature extraction untuk kelas yang mirip

c. Adjustmen decision threshold untuk kelas tertentu

3.8 Library Python

Library Python merupakan kumpulan modul dan fungsi yang telah

diprogram sebelumnya yang memungkinkan pengembang untuk melakukan

tugas-tugas spesifik tanpa harus menulis kode dari awal. Dalam konteks

pengembangan sistem berbasis kecerdasan buatan dan deep

learning, library Python berperan sebagai fondasi yang menyediakan abstraksi

tingkat tinggi untuk komputasi numerik, manipulasi data, dan implementasi

algoritma kompleks.

Konsep dasar library Python dalam pengembangan sistem mencakup

modularitas dan reusable code, di mana fungsi-fungsi yang umum digunakan

telah diimplementasikan dan dioptimasi sehingga pengembang dapat fokus pada

logika aplikasi daripada implementasi detail teknis. Setiap library biasanya

dikembangkan untuk domain spesifik dan menyediakan Application

Programming Interface (API) yang terdokumentasi dengan baik untuk

mempermudah integrasi.

37

Dalam ekosistem Python, mekanisme library management menggunakan

package manager seperti pip dan conda memungkinkan instalasi, update, dan

dependency resolution yang efisien. Virtual environment memastikan isolasi

dependencies antara proyek yang berbeda, mencegah konflik versi dan

memelihara konsistensi lingkungan pengembangan.

Konsep penting lainnya adalah interoperability antara berbagai library, di

mana output dari satu library dapat menjadi input untuk library lainnya,

menciptakan alur kerja yang terintegrasi. Arsitektur berlapis dari library Python

memungkinkan abstraksi dari level rendah (komputasi hardware) hingga level

tinggi (implementasi algoritma machine learning), memberikan fleksibilitas

dalam pengembangan aplikasi yang kompleks.

Table 3.2 Library Python

Library/Module Fungsi Utama

os Operasi sistem file dan direktori

random Generate angka dan data acak

PIL.Image Manipulasi dan pemrosesan gambar

matplotlib.pyplot Visualisasi data dan grafik

tensorflow Framework deep learning utama

tensorflow.keras API high-level untuk model neural network

tensorflow.keras.applications Model pre-trained (MobileNetV2)

tensorflow.keras.preprocessing.image Preprocessing dan augmentasi gambar

tensorflow.keras.models Konstruksi dan penyimpanan model

tensorflow.keras.layers Layer neural network

tensorflow.keras.optimizers Optimizer training model

tensorflow.keras.callbacks Callbacks selama proses training

tensorflow.keras.regularizers Regularisasi model

numpy Komputasi numerik dan array

sklearn.metrics Evaluasi performa model

seaborn Visualisasi data statistik

tkinter Membuat antarmuka grafis

38

cv2 Pemrosesan gambar dan computer vision

requests HTTP requests untuk API

datetime Manipulasi tanggal dan waktu

39

BAB IV

PEMBAHASAN

4.1 Analisis Kebutuhan Sistem

Analisis kebutuhan sistem dilakukan untuk mengidentifikasi dan

mendefinisikan segala hal yang diperlukan agar sistem dapat dibangun dan

berfungsi sesuai dengan tujuan. Analisis ini meliputi kebutuhan fungsional dan

non-fungsional.

4.1.1 Kebutuhan Fungsional

Berdasarkan Rumusan Masalah 1: "Bagaimana merancang sistem

berbasis deep learning menggunakan model MobileNetV2 untuk mengenali

dan mengklasifikasikan jenis kendaraan (truk, mobil, motor, dan bus) secara

otomatis dan akurat?"

1. Akusisi Data Gambar

a. Sistem harus mampu menerima input video real-time dari

IP/Webcam

b. Sistem harus dapat melakukan frame capture otomatis ketika

terdeteksi adanya pergerakan kendaraan

c. Resolusi gambar minimum 640 x 480 piksel untuk memastikan

kualitas gambar yang cukup untuk klasifikasi

2. Preprocessing Gambar

a. Sistem harus melakukan resizing gambar ke dimensi 224x224

piksel sesuai input requirement MobileNetV2

b. Sistem harus melakukan normalisasi pixel values ke range [0,1]

c. Sistem harus menerapkan augmentasi data selama training

(rotation, flipping, brightness adjustment)

3. Klasifikasi Kendaraan

a. Sistem harus menggunakan arsitektur MobileNetV2 sebagai base

model dengan weights pre-trained pada ImageNet

b. Sistem harus mampu mengklasifikasikan kendaraan ke dalam 4

kelas: truk, mobil, motor, bus

40

c. Sistem harus memiliki confidence threshold minimum 80% untuk

validasi prediksi

d. Sistem harus menyimpan model terbaik berdasarkan validation

accuracy

Berdasarkan Rumusan Masalah 2: "Bagaimana mengintegrasikan sistem

klasifikasi kendaraan dengan kamera untuk pengambilan gambar dan

memastikan pengiriman notifikasi ke petugas keamanan dan admin melalui

aplikasi Telegram dalam waktu kurang dari 10 detik?"

1. Integrasi Kamera Real-time

a. Sistem harus terintegrasi dengan kamera melalui protokol RTSP

(Real-time Streaming Protocol) atau USB

b. Sistem harus mampu melakukan continuous monitoring tanpa

crash

c. Sistem harus memiliki mekanisme error handling ketika koneksi

kamera terputus

2. Sistem Notifikasi Telegram

a. Sistem harus terintegrasi dengan Telegram Bot API menggunakan

token yang valid

b. Sistem harus mengirim notifikasi ke dua recipient berbeda:

petugas keamanan (semua kendaraan) dan admin (khusus truk)

c. Notifikasi harus berisi: jenis kendaraan, timestamp, confidence

score, dan foto kendaraan

d. Sistem harus memiliki retry mechanism ketika pengiriman

notifikasi gagal

3. Manajemen Data dan Logging

a. Sistem harus mencatat setiap aktivitas deteksi ke dalam file log

b. Sistem harus menyimpan gambar kendaraan yang terdeteksi untuk

keperluan audit

c. Sistem harus menyimpan data statistik harian jumlah kendaraan

per jenis

41

4.1.2 Kebutuhan Non-Fungsional

1. Kinerja Sistem

a. Waktu end-to-end dari capture gambar hingga pengiriman

notifikasi harus < 10 detik

b. Akurasi klasifikasi harus > 90% pada testing dataset

c. Sistem harus mampu berjalan 24/7 dengan uptime > 95%

2. Keandalan

a. Sistem harus memiliki mekanisme error handling untuk berbagai

skenario failure

b. Sistem harus mampu recover automatically dari koneksi error

c. Data loss tidak boleh lebih dari 5% dari total deteksi

3. Keterbatasan Sumber Daya

a. Sistem harus dapat berjalan pada hardware minimal komputer

dengan spesifikasi minimum atau equivalent

b. Konsumsi memori tidak boleh melebihi 4GB selama operasional

c. Penggunaan CPU tidak boleh melebihi 70% selama inferensi

4. Maintainability

a. Kode harus terdokumentasi dengan baik dan modular

b. Konfigurasi sistem harus terpusat dalam file configuration

c. Sistem harus mudah untuk di-deploy ulang

4.2 Perancangan Sistem

Perancangan sistem klasifikasi kendaraan ini mengintegrasikan tiga

komponen utama yang bekerja secara berurutan untuk mencapai tujuan dari kerja

praktik ini. Sistem dirancang dengan pendekatan modular yang memungkinkan

setiap komponen dapat dikembangkan dan diuji secara independen. Komponen

pertama adalah modul akuisisi data yang bertanggung jawab untuk menangkap

stream video secara real-time dari kamera yang dipasang di gerbang masuk

kawasan CV. Indah Jaya Sentosa. Modul ini akan secara kontinu memantau aliran

video dan melakukan deteksi pergerakan untuk mengidentifikasi keberadaan

kendaraan yang mendekat. Begitu kendaraan terdeteksi, sistem akan secara

42

otomatis menangkap frame gambar yang paling jelas dan melakukan

preprocessing dasar seperti penskalaan ukuran gambar dan normalisasi nilai

piksel agar sesuai dengan kebutuhan input model klasifikasi.

Komponen inti dari sistem ini adalah modul klasifikasi kendaraan yang

menggunakan arsitektur Deep learning MobileNetV2 yang telah dimodifikasi

melalui teknik transfer learning. Model ini telah dilatih sebelumnya pada dataset

ImageNet dan disesuaikan untuk mengklasifikasikan empat jenis kendaraan yang

relevan dengan operasional perusahaan, yaitu truk, mobil, sepeda motor, dan bus.

Gambar yang telah diproses dari modul akuisisi data akan diumpankan ke model

ini untuk dilakukan inferensi, yang menghasilkan probabilitas untuk setiap kelas

kendaraan. Hasil klasifikasi dengan confidence score tertinggi dan melebihi

threshold yang ditentukan akan dianggap sebagai output final.

Komponen terakhir adalah modul notifikasi dan logging yang bertugas

mengelola komunikasi hasil klasifikasi kepada pihak-pihak terkait. Modul ini

terintegrasi dengan Telegram Bot API untuk mengirimkan notifikasi real-time

secara otomatis. Setiap kali kendaraan berhasil diklasifikasikan, sistem akan

mengirimkan pesan yang berisi jenis kendaraan, timestamp, dan foto kendaraan

yang terdeteksi ke petugas keamanan. Untuk kendaraan bertipe truk yang

memiliki dampak langsung terhadap rantai distribusi, notifikasi tambahan akan

dikirimkan khusus kepada admin gudang. Selain itu, semua aktivitas deteksi dan

klasifikasi dicatat secara rapi dalam file log untuk keperluan dokumentasi, audit,

dan analisis lebih lanjut.

4.2.1 Diagram Blok Sistem

Diagram blok sistem menggambarkan alur kerja keseluruhan dari

sistem klasifikasi jenis kendaraan berbasis Deep learning, berdasarkan draft

flowchart yang disediakan. Flowchart asli menunjukkan proses mulai dari

validasi dataset hingga pengiriman notifikasi berdasarkan deteksi kendaraan

sebagai truk atau bukan. Dalam konteks penelitian ini, diagram blok

dimodifikasi untuk mengintegrasikan model MobileNetV2, pengambilan

gambar real-time, dan notifikasi via Telegram untuk empat kelas kendaraan

(truk, mobil, motor, bus). Berikut adalah penjelasan komponen utama dalam

43

diagram blok, yang disesuaikan dengan gambar flowchart:

Figure 4.1 Diagram Blok Sistem

1. Mulai (Start): Titik awal proses sistem.

2. Validasi Dataset: Validasi dataset gambar kendaraan untuk

memastikan kualitas dan keseimbangan kelas (truk, mobil, motor,

bus).

3. Buat Model CNN (Menggunakan MobileNetV2): Load model

MobileNetV2 pre-trained dan fine-tune dengan lapisan tambahan

untuk klasifikasi multi-kelas.

4. Training Model: Pelatihan model dengan data augmentasi

menggunakan ImageDataGenerator.

5. Simpan Model: Simpan model terlatih dalam format .h5 untuk

deployment.

6. Input Source?: Pilih sumber input:

a. Pilih Gambar dari File: Ambil gambar dari file local

b. Capture Gambar dari Kamera: Tangkap gambar real-time via

webcam atau IP camera menggunakan OpenCV.

7. Preprocessing Gambar: Resize ke 224x224, normalisasi, dan

44

preprocess_input MobileNetV2.

8. Predict Class Kendaraan: Inferensi menggunakan model untuk

memprediksi kelas (truk, mobil, motor, bus).

9. Decode Hasil Prediksi: Interpretasikan output prediksi menjadi label

kelas dengan confidence score.

10. Keputusan Berdasarkan Kelas (Modifikasi dari flowchart asli yang

hanya biner truk/bukan):

a. Jika truk: Kirim notifikasi ke Admin & Security via Telegram

(prioritas distribusi).

b. Jika bukan truk (mobil, motor, bus): Kirim ke Security saja.

11. Akhir (End): Proses selesai setelah notifikasi dikirim.

4.2.2 Arsitektur Model Deep learning - MobileNetV2 Custom Layers

Arsitektur model deep learning yang diimplementasikan dalam

sistem ini menggunakan pendekatan transfer

learning dengan MobileNetV2 sebagai base model. Pemilihan MobileNetV2

didasarkan pada efisiensi komputasinya yang tinggi dan ukuran model yang

ringan, sehingga cocok untuk aplikasi klasifikasi real-time.

1. Base Model: MobileNetV2 Pre-trained

A. Model menggunakan arsitektur MobileNetV2 yang telah dilatih

sebelumnya pada dataset ImageNet.

B. Konfigurasi base model:

a. weights='imagenet': Menggunakan bobot yang telah dilatih

pada ImageNet

b. include_top=False: Menghapus lapisan klasifikasi asli

MobileNetV2

c. input_shape=(224, 224, 3): Ukuran input gambar disesuaikan

dengan kebutuhan model

C. Pada tahap awal pelatihan, seluruh lapisan konvolusi pada base

model dibekukan (base_model.trainable = False) untuk

mempertahankan fitur-fitur umum yang telah dipelajari.

2. Custom Layers Architecture

45

Setelah base model, ditambahkan lapisan-lapisan kustom berikut

untuk membangun model klasifikasi kendaraan:

Penjelasan Lapisan Kustom:

A. Global Average Pooling 2D

a. Mengurangi dimensi spasial dari feature maps yang dihasilkan

MobileNetV2

b. Menghasilkan vektor fitur 1D yang siap untuk lapisan

klasifikasi

c. Lebih efisien secara komputasi dibandingkan Fully

Connected layer

B. Dropout Layer (Rate = 0.4)

a. Teknik regularisasi untuk mencegah overfitting

b. Mengabaikan secara acak 40% neuron selama pelatihan

C. Dense Layer (128 unit) dengan Aktivasi ReLU

a. Lapisan terhubung penuh dengan 128 neuron

b. Fungsi aktivasi ReLU untuk non-linearitas

c. Kernel regularizer L2 (λ = 0.01) untuk menstabilkan pelatihan

D. Dropout Layer (Rate = 0.3)

a. Regularisasi tambahan pada lapisan dense

E. Output Layer (Dense dengan Softmax Activation)

a. Jumlah neuron sesuai dengan jumlah kelas kendaraan (4 kelas)

b. Fungsi aktivasi softmax untuk menghasilkan probabilitas

setiap kelas

3. Kompilasi Model

Model dikompilasi dengan konfigurasi berikut:

model = Sequential([

 base_model,

 GlobalAveragePooling2D(),

 Dropout(0.4),

 Dense(128, activation='relu', kernel_regularizer=l2(0.01)),

 Dropout(0.3),

 Dense(train_generator.num_classes, activation='softmax')

])

46

A. Optimizer: Adam dengan learning rate = 1e-4

B. Loss Function: Categorical Crossentropy

C. Metrics: Accuracy

4. Strategi Pelatihan

A. Data Augmentation: Menggunakan ImageDataGenerator dengan

variasi:

a. Rotasi 30 derajat

b. Pergeseran horizontal dan vertikal (20%)

c. Shearing dan zooming (20-30%)

d. Horizontal flipping

B. Callbacks:

a. EarlyStopping: Menghentikan pelatihan jika tidak ada

improvement pada validation loss selama 5 epoch

b. ModelCheckpoint: Menyimpan model terbaik

berdasarkan validation accuracy

5. Ringkasan Arsitektur Model

Figure 4.2 Arsitektur Model Custom

Dengan arsitektur ini, model mampu memanfaatkan fitur-fitur umum yang

telah dipelajari MobileNetV2 dari ImageNet, sementara lapisan kustom

beradaptasi secara spesifik untuk tugas klasifikasi kendaraan pada CV.

Indah Jaya Sentosa.

4.3 Implementasi Sistem

Implementasi sistem klasifikasi kendaraan berbasis deep learning ini

47

dilakukan melalui beberapa tahap, mulai dari persiapan lingkungan

pengembangan hingga integrasi seluruh komponen sistem untuk membangun

suatu solusi yang berfungsi secara end-to-end.

4.3.1 Environment Development

Pengembangan sistem dilakukan menggunakan

lingkungan software dan hardware yang telah ditentukan untuk

memastikan konsistensi dan kompatibilitas antar komponen.

1. Spesifikasi Perangkat Lunak

A. Sistem Operasi: Windows 10/11 atau Ubuntu 20.04 LTS

B. Bahasa Pemrograman: Python 3.8

C. Framework Deep learning: TensorFlow 2.10 dengan Keras

D. Library Pendukung:

a. OpenCV (CV2) untuk akusisi gambar dan preprocessing

b. NumPy untuk komputasi numerik

c. Matplotlib & Seaborn untuk visualisasi

d. Telegram Bot API (python-Telegram-bot) untuk notifikasi

e. Pillow (PIL) untuk manipulasi gambar

2. Spesifikasi Perangkat Keras

A. Prosesor: Intel Core I5 atau setara

B. RAM: Minimal 8 GB

C. Penyimpanan: SSD 256 GB

D. Koneksi Jaringan: Internet untuk notifikasi Telegram

3. Konfigurasi Environment

Lingkungan development dikonfigurasi menggunakan virtual

environment untuk mengisolasi dependensi. Semua library yang

diperlukan dicantumkan dalam file requirements.txt untuk

memudahkan instalasi dan reproduksi.

4.3.2 Alur Kerja Sistem

Alur kerja sistem dirancang untuk memproses input gambar dari kamera,

mengklasifikasikan jenis kendaraan, dan mengirimkan notifikasi

48

secara real-time. Berikut adalah penjelasan langkah demi langkah

berdasarkan flowchart implementasi:

Figure 4.3 Diagram Alur Kerja Sistem

1. Input Video Real-time:

a. Sistem membaca frame secara kontinu dari kamera yang terpasang

di gerbang masuk.

b. Setiap frame diperiksa untuk mendeteksi keberadaan kendaraan.

2. Deteksi dan Capture Kendaraan:

a. Jika terdeteksi kendaraan, sistem melakukan capture gambar

kendaraan.

b. Jika tidak terdeteksi, sistem kembali membaca frame berikutnya.

3. Preprocessing Gambar:

a. Gambar yang terdeteksi di-resize menjadi 224x224 piksel.

b. Dilakukan normalisasi nilai piksel untuk mempersiapkan input

model.

4. Klasifikasi dengan MobileNetV2:

a. Gambar diproses oleh model MobileNetV2 yang telah dilatih.

b. Model memprediksi kelas kendaraan (truk, mobil, motor, bus) dan

menghasilkan confidence score.

5. Validasi Hasil Klasifikasi:

a. Jika confidence score ≥ 80%, sistem melanjutkan ke decode hasil.

b. Jika confidence score < 80%, sistem mengabaikan hasil dan

49

kembali memantau.

6. Logging Data:

a. Gambar kendaraan disimpan untuk dokumentasi.

b. Data dicatat meliputi: jenis kendaraan, waktu deteksi,

dan confidence score.

7. Keputusan Notifikasi:

a. Jika kendaraan terdeteksi sebagai truk: notifikasi dikirim

ke Admin & Security.

b. Jika kendaraan bukan truk (mobil, motor, bus): notifikasi dikirim

ke Security saja.

8. Pengiriman Notifikasi Telegram:

a. Notifikasi dikirim via Telegram Bot API.

b. Isi notifikasi: jenis kendaraan, timestamp, confidence score, dan

foto kendaraan.

9. Looping Kontinu:

a. Sistem kembali membaca frame kamera berikutnya untuk

mendeteksi kendaraan selanjutnya.

Dengan alur ini, sistem mampu beroperasi secara otomatis, akurat, dan

responsif dalam mendukung operasional CV. Indah Jaya Sentosa dengan

waktu respons end-to-end di bawah 10 detik.

4.3.3 Implementasi Kode Program

Sistem diimplementasikan menggunakan empat script Python yang saling

terintegrasi. Berikut adalah implementasi lengkap kode program:

1. Script Training (train.py)

Script ini bertanggung jawab untuk melatih model deep

learning menggunakan arsitektur MobileNetV2 dengan teknik transfer

learning.

Fungsi Utama:

a. Load dataset kendaraan dari path folder

b. Implementasi data augmentation untuk meningkatkan variasi data

50

c. Transfer Learning dengan MobileNetV2 sebagai base model

d. Training model dengan early stopping dan model checkpointing

e. Evaluasi performa dan penyimpanan model terbaik

Implementasi code kunci:

Eksplorasi struktur dataset kendaraan

def explore_dataset_structure(base_path):

 for item in os.listdir(base_path):

 item_path = os.path.join(base_path, item)

 if os.path.isdir(item_path):

 print(f"{item}/")

 for subitem in os.listdir(item_path):

 subitem_path = os.path.join(item_path, subitem)

 if os.path.isdir(subitem_path):

 images = [f for f in os.listdir(subitem_path)

 if f.lower().endswith(('.jpg', '.jpeg', '.png'))]

 print(f" └── {subitem}/ ({len(images)} images)")

Data augmentation untuk meningkatkan variasi data training

train_datagen = ImageDataGenerator(

 rotation_range=30, # Rotasi gambar hingga 30 derajat

 width_shift_range=0.2, # Geser horizontal 20%

 height_shift_range=0.2, # Geser vertikal 20%

 shear_range=0.2, # Shear transformation 20%

 zoom_range=0.3, # Zoom hingga 30%

 horizontal_flip=True, # Flip horizontal

 fill_mode='nearest' # Metode pengisian piksel

)

Pembuatan model MobileNetV2 dengan lapisan kustom

base_model = MobileNetV2(weights='imagenet',

include_top=False, input_shape=(224, 224, 3))

51

base_model.trainable = False # Freeze base model untuk transfer

learning

model = Sequential([

 base_model, # Base model MobileNetV2

 GlobalAveragePooling2D(), # Global average pooling

 Dropout(0.4), # Dropout 40% untuk regularisasi

 Dense(128, activation='relu', kernel_regularizer=l2(0.01)), #

Dense layer dengan L2 regularization

 Dropout(0.3), # Dropout 30% tambahan

 Dense(train_generator.num_classes, activation='softmax') #

Output layer untuk klasifikasi

])

Pelatihan model dengan early stopping dan model checkpointing

early_stopping = EarlyStopping(

 monitor='val_loss', # Monitor validation loss

 patience=5, # Berhenti jika tidak membaik dalam 5 epoch

 restore_best_weights=True # Kembali ke weights terbaik

)

checkpoint = ModelCheckpoint(

 "best_vehicle_classifier.keras", # Nama file model terbaik

 monitor='val_accuracy', # Monitor validation accuracy

 save_best_only=True, # Hanya simpan yang terbaik

 mode='max' # Mode maksimasi accuracy

)

Training model dengan callbacks

history = model.fit(

 train_generator, # Data training

52

 epochs=50, # Maksimal 50 epoch

 validation_data=val_generator, # Data validasi

 callbacks=[early_stopping, checkpoint] # Callbacks untuk

optimasi

)

Evaluasi performa model dan visualisasi hasil training

plt.figure(figsize=(12, 5))

Plot accuracy

plt.subplot(1, 2, 1)

plt.plot(history.history['accuracy'], label='Training Accuracy')

plt.plot(history.history['val_accuracy'], label='Validation

Accuracy')

plt.title('Model Accuracy')

plt.xlabel('Epoch')

plt.ylabel('Accuracy')

plt.legend()

Plot loss

plt.subplot(1, 2, 2)

plt.plot(history.history['loss'], label='Training Loss')

plt.plot(history.history['val_loss'], label='Validation Loss')

plt.title('Model Loss')

plt.xlabel('Epoch')

plt.ylabel('Loss')

plt.legend()

plt.tight_layout()

plt.show()

53

2. Script Testing (test.py)

Script ini digunakan untuk evaluasi komprehensif model yang telah

dilatih menggunakan dataset testing.

Fungsi Utama:

a. Load model terlatih dan dataset testing

b. Evaluasi kuantitatif menggunakan metrik akurasi dan loss

c. Analisis detail dengan classification report dan confusion matrix

d. Antarmuka grafis untuk klasifikasi gambar tunggal

e. Visualisasi hasil prediksi dengan grafik probabilitas

Implementasi code kunci:

Load model terlatih dan dataset testing

model = load_model("vehicle_classifier.keras") # Load model yang

sudah dilatih

test_generator = test_datagen.flow_from_directory(

 os.path.join(dataset_path, 'test'), # Path dataset test

 target_size=(224, 224), # Resize gambar ke 224x224

 batch_size=32, # Batch size untuk testing

 class_mode='categorical', # Mode klasifikasi kategorikal

 shuffle=False # Tidak acak untuk evaluasi konsisten

)

Evaluasi kuantitatif menggunakan metrik akurasi dan loss

test_loss, test_acc = model.evaluate(test_generator, verbose=1)

print(f"Test Accuracy: {test_acc*100:.2f}%") # Akurasi testing

print(f"Test Loss: {test_loss:.4f}") # Loss testing

Analisis detail dengan classification report dan confusion matrix

predictions = model.predict(test_generator) # Prediksi

pada test set

predicted_classes = np.argmax(predictions, axis=1) # Ambil

54

kelas prediksi

true_classes = test_generator.classes # Kelas sebenarnya

Classification report untuk precision, recall, f1-score

print(classification_report(true_classes, predicted_classes,

target_names=class_labels))

Confusion matrix untuk analisis kesalahan klasifikasi

cm = confusion_matrix(true_classes, predicted_classes)

sns.heatmap(cm, annot=True, fmt='d',

 xticklabels=class_labels,

 yticklabels=class_labels)

plt.title('Confusion Matrix - Klasifikasi Kendaraan')

plt.xlabel('Predicted Label')

plt.ylabel('True Label')

plt.show()

Antarmuka grafis untuk klasifikasi gambar tunggal

def pilih_gambar_dari_explorer():

 root = tk.Tk()

 root.withdraw() # Sembunyikan window utama

 return filedialog.askopenfilename(

 title="Pilih Gambar Kendaraan untuk Diklasifikasi",

 filetypes=[("Image files", "*.jpg *.jpeg *.png")] # Filter file

gambar

)

Visualisasi hasil prediksi dengan grafik probabilitas

def display_prediction(image_path, results):

 plt.figure(figsize=(14, 7))

55

 # Tampilkan gambar input

 plt.subplot(1, 2, 1)

 plt.imshow(Image.open(image_path))

 plt.title(f'Gambar Input: {os.path.basename(image_path)}')

 plt.axis('off')

 # Tampilkan grafik probabilitas

 plt.subplot(1, 2, 2)

 classes = list(results['all_predictions'].keys())

 probabilities = list(results['all_predictions'].values())

 # Warna berbeda untuk kelas terpilih

 colors = ['lightblue' if cls != results['predicted_class'] else

'steelblue'

 for cls in classes]

 bars = plt.barh(classes, probabilities, color=colors)

 plt.xlabel('Probabilitas')

 plt.title('Hasil Prediksi Model')

 plt.xlim(0, 1) # Batas probabilitas 0-1

 # Tambahkan nilai probabilitas pada bar

 for bar, prob in zip(bars, probabilities):

 plt.text(prob + 0.01, bar.get_y() + bar.get_height()/2,

 f'{prob:.4f}', va='center', fontweight='bold')

 plt.tight_layout()

 plt.show()

3. Script Telegram Bot (testbot.py)

Script ini mengintegrasikan sistem klasifikasi dengan notifikasi real-

56

time melalui Telegram API.

Fungsi Utama:

a. Klasifikasi gambar dari file explorer

b. Pengiriman notifikasi otomatis berdasarkan jenis kendaraan

c. Notifikasi ke security untuk semua kendaraan

d. Notifikasi tambahan ke admin khusus untuk kendaraan truk

e. Format pesan terstruktur dengan detail probabilitas

Implementasi code kunci:

Klasifikasi gambar dari file explorer

image_path = pilih_gambar_dari_explorer() # Pilih gambar dari

dialog file

results = predict_single_image(image_path, model) # Klasifikasi

gambar

Format pesan terstruktur dengan detail probabilitas

message = f"🚗 HASIL KLASIFIKASI KENDARAAN\n\n"

message += f"Waktu: {datetime.now().strftime('%Y-%m-%d

%H:%M:%S')}\n"

message += f"Jenis: {results['predicted_class'].upper()}\n"

message += f"Keyakinan: {results['confidence']*100:.2f}%\n\n"

message += "Detail Probabilitas:\n"

Tambahkan detail probabilitas semua kelas

for cls, prob in sorted(results['all_predictions'].items(), key=lambda

x: x[1], reverse=True):

 star = "⭐ " if cls == results['predicted_class'] else " " # Tanda

untuk kelas terpilih

 message += f"{star}{cls}: {prob*100:.2f}%\n"

Pengiriman notifikasi otomatis berdasarkan jenis kendaraan

57

def send_notification_based_on_vehicle(predicted_class, message,

image_path):

 # Notifikasi ke security untuk semua kendaraan

 send_to_Telegram(SECURITY_BOT_TOKEN,

SECURITY_CHAT_ID, message, image_path)

 print("Notifikasi dikirim ke Security")

 # Notifikasi tambahan ke admin khusus untuk kendaraan truk

 if predicted_class.lower() == 'truk':

 send_to_Telegram(ADMIN_BOT_TOKEN,

ADMIN_CHAT_ID, message, image_path)

 print("Notifikasi tambahan dikirim ke Admin (TRUK

terdeteksi)")

 else:

 print(f"Kendaraan {predicted_class.upper()}, hanya notifikasi

ke Security")

Eksekusi notifikasi berdasarkan hasil klasifikasi

send_notification_based_on_vehicle(results['predicted_class'],

message, image_path)

4. Script Camera (testcamera.py)

Script ini mengimplementasikan sistem real-time dengan input

langsung dari webcam untuk klasifikasi instan.

Fungsi Utama:

a. Capture gambar langsung dari webcam

b. Preprocessing frame video real-time

c. Klasifikasi otomatis dengan confidence threshold

d. Pengiriman notifikasi Telegram dengan format Markdown

e. Penyimpanan gambar sementara untuk dokumentasi

Implrmentasi code kunci:

58

Capture gambar langsung dari webcam

def capture_image_from_webcam():

 cap = cv2.VideoCapture(0) # Buka kamera default

 if not cap.isOpened():

 print("ERROR: Tidak dapat mengakses webcam!")

 return None

 print("Kamera aktif. Tekan 's' untuk mengambil gambar, 'q' untuk

keluar.")

 while True:

 ret, frame = cap.read()

 if not ret:

 print("Gagal menangkap frame dari kamera!")

 break

 # Tampilkan preview webcam

 cv2.imshow('Webcam - Tekan "s" untuk simpan, "q" untuk

keluar', frame)

 key = cv2.waitKey(1) & 0xFF

 if key == ord('s'): # Simpan gambar ketika tekan 's'

 # Buat directory temporary jika belum ada

 temp_dir = "temp_images"

 if not os.path.exists(temp_dir):

 os.makedirs(temp_dir)

 # Simpan gambar dengan timestamp

 timestamp =

datetime.now().strftime("%Y%m%d_%H%M%S")

 image_path =

59

f"{temp_dir}/webcam_capture_{timestamp}.jpg"

 cv2.imwrite(image_path, frame)

 print(f"Gambar disimpan: {image_path}")

 cap.release()

 cv2.destroyAllWindows()

 return image_path

 elif key == ord('q'): # Keluar ketika tekan 'q'

 print("Keluar dari mode kamera")

 break

 cap.release()

 cv2.destroyAllWindows()

 return None

Preprocessing frame video real-time

def preprocess_frame(frame, img_size=224):

 frame_resized = cv2.resize(frame, (img_size, img_size)) #

Resize ke input model

 frame_normalized = frame_resized / 255.0 # Normalisasi

[0,1]

 frame_expanded = np.expand_dims(frame_normalized, axis=0)

Tambahkan batch dimension

 return frame_expanded

Klasifikasi otomatis dengan confidence threshold

def classify_with_confidence_threshold(image_path, model,

confidence_threshold=0.8):

 results = predict_single_image(image_path, model) # Prediksi

gambar

60

 if results['confidence'] >= confidence_threshold:

 print(f"Klasifikasi berhasil (confidence:

{results['confidence']:.4f})")

 return results

 else:

 print(f"Confidence terlalu rendah: {results['confidence']:.4f} <

{confidence_threshold}")

 return None # Abaikan jika confidence di bawah threshold

Pengiriman notifikasi Telegram dengan format Markdown

def send_Telegram_markdown_notification(bot_token, chat_id,

message, image_path):

 # Escape karakter khusus MarkdownV2

 escaped_message = escape_markdown_v2(message)

 params = {

 "chat_id": chat_id,

 "text": escaped_message,

 "parse_mode": "MarkdownV2" # Format Markdown untuk

styling

 }

 # Kirim pesan teks

 response =

requests.post(f"https://api.Telegram.org/bot{bot_token}/sendMess

age",

 params=params)

 # Kirim gambar jika tersedia

 if image_path and os.path.exists(image_path):

61

 with open(image_path, 'rb') as img_file:

requests.post(f"https://api.Telegram.org/bot{bot_token}/sendPhoto

",

 params={"chat_id": chat_id},

 files={'photo': img_file})

Penyimpanan gambar sementara untuk dokumentasi

temp_dir = "temp_images"

if not os.path.exists(temp_dir):

 os.makedirs(temp_dir)

 print(f"Directory {temp_dir} created for temporary image

storage")

else:

 print(f"Directory {temp_dir} already exists for image storage")

4.4 Pengujian Sistem

Pengujian sistem dilakukan untuk memvalidasi kinerja dan keandalan

sistem klasifikasi kendaraan secara keseluruhan. Pengujian ini dirancang untuk

mengukur dua aspek utama: akurasi model klasifikasi dan kinerja sistem

secara end-to-end dalam lingkungan yang mendekati kondisi real-time.

Pendekatan pengujian mengikuti metodologi yang sistematis, dimana

setiap komponen sistem diuji secara terpisah terlebih dahulu, kemudian

diintegrasikan dan diuji sebagai satu kesatuan. Pengujian komponen meliputi

validasi model deep learning, sedangkan pengujian integrasi mencakup

keseluruhan alur sistem mulai dari akuisisi gambar, klasifikasi kendaraan, hingga

pengiriman notifikasi.

Tujuan pengujian adalah untuk memverifikasi bahwa sistem memenuhi

semua kebutuhan fungsional dan non-fungsional yang telah ditetapkan, termasuk

akurasi klasifikasi di atas 90% dan waktu respons end-to-end di bawah 10 detik.

Pengujian dilakukan dalam lingkungan yang terkontrol namun merepresentasikan

62

kondisi operasional aktual di CV. Indah Jaya Sentosa.

4.4.1 Metodologi Testing

Metodologi testing yang diterapkan dalam penelitian ini

menggunakan pendekatan black-box testing dan performance testing untuk

mengevaluasi sistem secara komprehensif. Pengujian dilakukan secara

bertahap dengan fokus pada aspek fungsionalitas dan kinerja sistem

secara end-to-end.

1. Pendekatan Pengujian:

a. Unit Testing: Menguji masing-masing modul sistem secara

terisolasi, termasuk model klasifikasi, preprocessing gambar, dan

modul notifikasi.

b. Integration Testing: Memverifikasi integrasi antar modul sistem

untuk memastikan alur kerja yang seamless dari akuisisi gambar

hingga pengiriman notifikasi.

c. Performance Testing: Mengukur waktu respons sistem dan akurasi

model dalam kondisi beban kerja yang variatif.

2. Matrik Evaluasi:

a. Akurasi Model: Diukur menggunakan accuracy, precision, recall,

dan F1-score pada dataset testing.

b. Kinerja Sistem: Diukur melalui waktu respons end-to-end dari

deteksi kendaraan hingga notifikasi terkirim.

c. Keandalan: Dievaluasi berdasarkan konsistensi performa dalam

multiple running sessions.

3. Protokol Pengujian:

a. Setiap pengujian dilakukan minimal 5 kali running untuk

memastikan konsistensi hasil.

b. Variasi kondisi testing mencakup perbedaan lighting, sudut

pengambilan gambar, dan jenis kendaraan.

c. Pengukuran waktu menggunakan high-resolution timer untuk

akurasi milidetik.

63

4. Environment Testing:

a. Lingkungan pengujian menggunakan hardware dan software yang

sama dengan environment production.

b. Dataset testing yang representative dengan distribusi kelas yang

seimbang.

c. Kondisi jaringan internet yang stabil untuk testing notifikasi real-

time.

Metodologi ini dirancang untuk memberikan evaluasi yang komprehensif

dan objektif terhadap kinerja sistem secara keseluruhan.

Proses distribusi dataset mengikuti alur terstruktur seperti yang

ditunjukkan pada Gambar 4.4 untuk memastikan validitas dan reliabilitas

hasil pengujian model. Dataset utama yang berisi gambar kendaraan

dikelompokkan ke dalam empat kelas: bus, mobil, motor, dan truk.

Figure 4.4 Diagram Distribusi Dataset

Alur distribusi dataset dimulai dari pengumpulan data mentah yang

kemudian melalui proses pembagian secara proporsional menjadi tiga subset

utama:

1. Dataset Training (450 gambar)

64

a. Digunakan secara eksklusif untuk proses pelatihan model

b. Menerapkan teknik augmentasi data untuk meningkatkan variasi

dataset

c. Berperan dalam penyesuaian bobot model melalui algoritma

backpropagation

2. Dataset Validation (126 gambar)

a. Digunakan untuk memantau proses pelatihan dan mencegah

overfitting

b. Berfungsi sebagai acuan dalam penerapan early stopping

c. Membantu dalam tuning hyperparameter model

3. Dataset Testing (126 gambar)

a. Digunakan hanya untuk evaluasi akhir model yang telah dilatih

b. Tidak pernah diperlihatkan kepada model selama proses pelatihan

c. Merepresentasikan data baru untuk mengukur kemampuan

generalisasi model

Setiap subset mempertahankan distribusi kelas yang seimbang, memastikan

bahwa tidak ada bias terhadap kelas tertentu dalam proses pengujian.

Pembagian ini mengikuti best practices dalam pengembangan sistem

machine learning untuk memastikan evaluasi yang objektif dan dapat

dipercaya.

4.4.2 Skenario Pengujian

Skenario pengujian dirancang untuk mengevaluasi sistem dalam

kondisi yang mendekati penerapan nyata di CV. Indah Jaya Sentosa.

Pengujian dilakukan berdasarkan dua aspek kritis: akurasi

klasifikasi dan kinerja waktu (latency).

1. Pengujian Akurasi Klasifikasi

A. Pengujian Akurasi Model pada Data Baru (Testing Set)

a. Tujuan: Mengukur kemampuan model dalam

mengklasifikasikan empat jenis kendaraan (truk, mobil, motor,

bus) pada data yang belum pernah dilihat sebelumnya.

65

b. Skenario: Model yang telah dilatih dievaluasi menggunakan

dataset testing yang terisolasi sebanyak 126 gambar.

c. Kondisi: Pengujian dilakukan secara offline menggunakan

gambar yang telah dikumpulkan sebelumnya,

merepresentasikan variasi kendaraan yang masuk ke area

perusahaan.

B. Pengujian Konsistensi dan Keandalan Model

a. Tujuan: Memvalidasi stabilitas performa model dan

memastikan bahwa hasil yang baik bukanlah suatu kebetulan.

b. Skenario: Proses pelatihan dan evaluasi model diulang

sebanyak 5 kali dengan inisialisasi acak yang berbeda.

c. Kondisi: Setiap pelatihan baru menggunakan pembagian data

dan parameter awal yang berbeda untuk menguji konsistensi

akhir.

2. Pengujian Latency dan Kinerja Real-time

A. Pengujian Latency End-to-End

a. Tujuan: Mengukur total waktu respons sistem, mulai dari

kendaraan terdeteksi hingga notifikasi diterima oleh pengguna.

b. Skenario: Sistem dijalankan secara real-time. Waktu diukur

dari saat gambar di-capture oleh kamera hingga notifikasi

muncul di aplikasi Telegram petugas.

c. Kondisi: Mensimulasikan alur operasional nyata di gerbang

masuk perusahaan. Pengujian dilakukan berulang kali untuk

setiap kelas kendaraan.

B. Pengujian Latency Komponen Individual

a. Tujuan: Mengidentifikasi komponen mana dalam sistem yang

paling banyak menghabiskan waktu.

b. Skenario: Waktu eksekusi untuk setiap tahap inti diukur secara

terpisah:

• Preprocessing gambar.

• Inference atau klasifikasi oleh model deep learning.

66

• Pengiriman pesan melalui Telegram Bot API.

c. Kondisi: Pengujian dilakukan dalam lingkungan yang

terkontrol untuk mengisolasi performa setiap komponen.

C. Pengujian Keandalan Notifikasi

a. Tujuan: Memastikan logika bisnis notifikasi berjalan sesuai

spesifikasi.

b. Skenario:

• Sistem diuji dengan semua jenis kendaraan untuk

memverifikasi bahwa notifikasi selalu dikirim ke petugas

keamanan.

• Sistem diuji khusus dengan kendaraan bertipe truk untuk

memverifikasi bahwa notifikasi tambahan juga dikirim ke

admin.

c. Kondisi: Menguji integrasi dan logika sistem, bukan hanya

keakuratan model.

3. Kondisi Lingkungan Pengujian

A. Lingkungan Terkontrol

a. Pengujian dilakukan pada perangkat keras dengan spesifikasi

standar.

b. Koneksi internet yang stabil untuk memastikan pengukuran

latency yang konsisten.

B. Variasi Input

a. Gambar kendaraan dengan berbagai sudut dan jarak.

b. Kondisi pencahayaan yang berbeda (siang hari).

Dengan skenario yang komprehensif ini, diharapkan performa dan

keandalan sistem dapat terukur secara objektif sebelum diterapkan di

lingkungan produksi.

4.4.3 Hasil Pengujian

1. Pengujian Akurasi Model

Pengujian sistem dilakukan secara komprehensif untuk memvalidasi

67

kinerja model klasifikasi kendaraan yang telah dibangun. Proses

pengujian akurasi model dilakukan melalui lima kali pelatihan

independen dengan inisialisasi bobot acak yang berbeda untuk

memastikan keandalan dan konsistensi hasil. Dataset testing yang

digunakan terdiri dari 126 gambar dengan distribusi merata across

keempat kelas kendaraan (bus, truk, motor, mobil).

Table 4.1 Training, Akurasi dan Loss

Training Accuracy Test Loss Macro F1-Score

Training 1 96.83% 1.6318 96.30%

Training 2 97.62% 1.7205 97.20%

Training 3 97.62% 1.6844 97.20%

Training 4 98.41% 1.7188 98.12%

Training 5 97.62% 1.6612 97.20%

Rata-rata 97.62% 1.6833 97.40%

Std Dev 0.53% 0.0335 0.60%

Rentang 96.83 - 98.41% 1.6318-1.7205 96.30-98.12%

Hasil kelima kali pelatihan menunjukkan konsistensi yang sangat

tinggi dengan akurasi testing rata-rata sebesar 97.62% (standar

deviasi: ±0.53%). Rentang akurasi yang dicapai berada antara 96.83%

hingga 98.41%, dimana model terbaik (dari pelatihan ke-4) berhasil

mencapai akurasi puncak sebesar 98.41%. Metrik F1-Score makro

rata-rata sebesar 97.40% (standar deviasi: ±0.60%) mengkonfirmasi

keseimbangan yang bagus antara precision dan recall di semua kelas.

Analisis per kelas menunjukkan performa yang baik (100% precision,

recall, dan F1-Score) untuk kelas mobil dan motor pada hampir semua

pelatihan, sementara kelas bus dan truk juga menunjukkan konsistensi

tinggi dengan F1-Score masing-masing di atas 90.

Untuk memperjelas distribusi prediksi antar kelas, dilakukan

visualisasi menggunakan confusion matrix seperti gambar 4.5.

68

Figure 4.5 Confusion Matrix

Gambar 4.5 menunujukkan bahwa model berhasil mengklasifikasikan

semua kelas kendaraan dengan tingkat akurasi tinggi. Kelas mobil dan

motor terdeteksi sempurna tanpa kesalahan prediksi, sedangkan

terdapat kesalahan minor pada kelas truk yang terklasifikasi sebagai

bus sebanyak tiga sampel. Kelas bus juga menunjukkan performa

tinggi dengan hanya sedikit kesalahan klasifikasi. Secara keseluruhan,

distribusi prediksi pada confusion matrix ini mengonfirmasi hasil

metrik kuantitatif pada Tabel 4.1 bahwa model memiliki kemampuan

generalisasi yang sangat baik untuk semua kelas kendaraan.

2. Pengujian Komunikasi Telegram

Selain pengujian akurasi model, dilakukan juga pengujian terhadap

kinerja sistem secara end-to-end, khususnya pada aspek kecepatan dan

keandalan komunikasi notifikasi real-time melalui platform Telegram.

Pengujian dilakukan untuk semua kelas kendaraan (truk, bus, mobil,

motor) dengan mengukur waktu respons sejak sistem mendeteksi

kendaraan hingga notifikasi berhasil diterima oleh petugas keamanan.

Table 4.2 Kecepatan Notifikasi Telegram

Kelas Pesan Teks Gambar Total

Truk 1.347s 1.974 3.322s

Bus 1.317s 3.161s 4.480s

69

Mobil 1.240s 2.234s 3.477s

Motor 1.143s 1.734s 2.879s

Rata-rata 1.262s 2.276s 3.539s

rentang 1.14-1.35s 1.73-3.16s 2.88-4.48s

Hasil pengujian yang dilakukan sebanyak 4 kali (setiap kelas

kendaraan) menunjukkan performa yang sangat responsif dan

konsisten. Rata-rata waktu pengiriman notifikasi ke Telegram adalah

3.54 detik, dengan rentang waktu antara 2.88 hingga 4.48 detik

tergantung jenis kendaraan. Performa tercepat dicapai oleh kelas

motor dengan waktu 2.88 detik, sementara kelas bus memerlukan

waktu paling lama yaitu 4.48 detik. Selisih waktu ini dipengaruhi oleh

faktor jaringan dan ukuran file gambar yang dikirim.

Secara detail, proses pengiriman notifikasi terbagi menjadi dua tahap:

pengiriman pesan teks (rata-rata 1.26 detik) dan pengiriman gambar

(rata-rata 2.28 detik). Hasil ini membuktikan bahwa komunikasi

Telegram hanya menggunakan 35% dari total alokasi waktu 10

detik yang ditetapkan dalam kebutuhan non-fungsional, sehingga

tidak menjadi bottleneck dalam sistem secara keseluruhan.

Keandalan sistem juga terbukti dengan tingkat keberhasilan

pengiriman 100% pada semua percobaan. Sistem secara konsisten

mengirimkan notifikasi ke petugas keamanan untuk semua jenis

kendaraan, dan notifikasi tambahan ke admin khusus untuk kendaraan

bertipe truk. Dengan demikian, sistem notifikasi Telegram

dinyatakan sangat memadai untuk aplikasi real-time dan siap

diimplementasikan dalam lingkungan produksi.

3. Arsitektur Model Klasifikasi Kendaraan

Arsitektur model yang digunakan dalam penelitian ini berbasis

MobileNetV2, yang di-fine-tune untuk mendeteksi empat kelas

kendaraan: bus, mobil, motor, dan truk. Model ini terdiri dari total 2.75

juta parameter, dengan 164.484 parameter trainable dan 2.257.984

parameter non-trainable, seperti ditunjukkan pada Gambar 4.6.

70

Figure 4.6 Model Summary

Model diawali dengan feature extractor dari MobileNetV2 (layer

convolutional) sebagai base model, diikuti oleh Global Average

Pooling 2D untuk mereduksi dimensi fitur. Selanjutnya, ditambahkan

dua Dropout layer untuk mencegah overfitting, serta dua Dense layer

dengan ukuran 128 neuron (ReLU) dan 4 neuron (Softmax) untuk

klasifikasi akhir.

71

Figure 4.7 Diagram Model Summary

Struktur ini dipilih karena efisien secara komputasi dan optimal untuk

implementasi di perangkat edge seperti ESP32-CAM atau sistem real-

time. Dengan jumlah parameter yang relatif kecil (10.5 MB), model

tetap mampu mencapai akurasi tinggi seperti ditunjukkan pada bagian

hasil pengujian.

4. Perbandingan Precision, Recall, dan F1-Score per Kelas

Untuk melihat performa model secara lebih komprehensif, dilakukan

visualisasi perbandingan nilai precision, recall, dan F1-score pada

setiap kelas, yaitu bus, mobil, motor, dan truk. Visualisasi ini

membantu dalam menilai konsistensi kinerja model pada tiap kategori

kendaraan

72

Figure 4.8 Perbandingan Precision, Recall, dan F1-Score per

kelas

Berdasarkan Gambar 4.8, dapat dilihat bahwa ketiga metrik utama

menunjukkan hasil yang tinggi pada semua kelas dengan nilai

mendekati 1.0. Kelas mobil dan motor memperoleh nilai precision,

recall, dan F1-score sempurna (1.0), menunjukkan kemampuan model

yang sangat baik dalam mengidentifikasi kedua kelas tersebut tanpa

kesalahan.

Sementara itu, kelas bus memiliki nilai precision sedikit lebih rendah

(sekitar 0.87), namun tetap menunjukkan kinerja yang sangat baik

dengan recall sempurna (1.0). Kelas truk juga memperlihatkan hasil

yang kuat dengan nilai F1-score sekitar 0.96.

Secara keseluruhan, grafik ini memperkuat bahwa model yang

dibangun telah mampu mengklasifikasikan citra kendaraan dengan

tingkat keakuratan yang tinggi dan performa yang stabil di seluruh

kelas.

Berdasarkan hasil pengujian yang telah dilakukan, dapat

disimpulkan bahwa model klasifikasi citra kendaraan berbasis MobileNetV2

menunjukkan performa yang sangat baik. Hasil evaluasi dari confusion

matrix menunjukkan tingkat prediksi yang akurat pada hampir semua kelas

dengan jumlah kesalahan yang sangat minim. Nilai precision, recall, dan

F1-score rata-rata yang mendekati 1.0 memperkuat bahwa model mampu

73

membedakan setiap kelas (bus, mobil, motor, dan truk) dengan konsistensi

tinggi.

Selain itu, arsitektur model yang diimplementasikan dengan

kombinasi MobileNetV2 sebagai base model yang dibekukan (frozen layer),

diikuti oleh lapisan Global Average Pooling, Dropout, dan Dense layer

dengan ReLU serta Softmax activation, terbukti efisien dengan jumlah

parameter yang relatif ringan namun tetap memberikan hasil optimal.

Grafik perbandingan metrik menunjukkan bahwa performa model

seimbang di semua kelas tanpa adanya dominasi atau ketimpangan yang

signifikan. Hal ini menandakan model memiliki generalisasi yang baik

terhadap data uji.

Secara keseluruhan, model yang dikembangkan telah berhasil

mencapai tujuan pengujian, yaitu menghasilkan sistem klasifikasi kendaraan

dengan tingkat akurasi tinggi, performa stabil, dan efisiensi komputasi yang

baik, sehingga layak digunakan sebagai komponen utama dalam sistem

pengenalan citra kendaraan berbasis deep learning.

4.5 Analisis Performa Sistem

Setelah dilakukan pengujian sistem pada subbab 4.4, langkah selanjutnya

adalah menganalisis hasil tersebut untuk mengetahui sejauh mana sistem

klasifikasi kendaraan yang dibangun mampu memenuhi kebutuhan performa, baik

dari sisi akurasi, efisiensi komputasi, maupun kecepatan komunikasi. Analisis ini

dilakukan untuk memperoleh pemahaman menyeluruh mengenai keunggulan,

stabilitas, dan kemampuan sistem dalam mendukung operasi real-time.

Secara umum, hasil pengujian pada bagian sebelumnya menunjukkan

bahwa model berbasis MobileNetV2 memberikan performa yang sangat baik

dengan rata-rata akurasi sebesar 97.62%, macro F1-score sebesar 97.40%, serta

standard deviation yang rendah (±0.53%). Nilai-nilai tersebut menunjukkan

konsistensi tinggi dan kemampuan generalisasi model terhadap data uji.

Untuk menganalisis performa secara lebih spesifik, dilakukan evaluasi

terhadap tiga aspek utama, yaitu kecepatan inferensi model, akurasi per kelas

kendaraan, dan latency notifikasi Telegram. Analisis berikut ini bertujuan untuk

74

menginterpretasikan hasil pengujian tersebut dalam konteks efisiensi dan

keandalan sistem secara end-to-end.

4.5.1 Analisis Kecepatan Inferensi

Berdasarkan hasil pengujian yang dilakukan pada Subbab 4.4.3,

kecepatan inferensi model dapat dianalisis melalui pendekatan tidak

langsung mengingat data waktu inferensi per gambar tidak diukur secara

terpisah. Namun, beberapa indikator performa dapat diidentifikasi dari data

yang tersedia.

1. Analisis Berdasarkan Arsitektur Model:

Berdasarkan Gambar 4.6 dan 4.7 pada Subbab 4.4.3, model yang

digunakan adalah MobileNetV2 dengan konfigurasi sebagai berikut:

a. Total parameter: 2.75 juta

b. Parameter yang dapat ditraining: 164,484

c. Parameter non-trainable: 2,257,984

Konfigurasi ini mengindikasikan model yang efisien secara

komputasi, dimana sebagian besar layer base model dibekukan

(frozen) dan hanya layer fully connected akhir yang ditraining ulang.

Pendekatan ini tidak hanya mengurangi risiko overfitting tetapi juga

mempertahankan kecepatan inferensi yang optimal.

2. Analisis Berdasarkan Hasil End-to-End Latency:

Data dari Tabel IV.2 pada Subbab 4.4.3 menunjukkan total latency

sistem sebesar 3.539 detik rata-rata, dengan breakdown:

a. Pengiriman pesan teks: 1.262 detik

b. Pengiriman gambar: 2.276 detik

Dengan asumsi bahwa waktu untuk preprocessing gambar dan

inferensi model termasuk dalam komponen pengiriman gambar, dapat

disimpulkan bahwa waktu yang dialokasikan untuk inferensi sangat

singkat, mengingat proses pengiriman gambar melalui jaringan

biasanya dominan dalam konsumsi waktu.

3. Kesesuaian dengan Target Real-time:

75

Sistem berhasil mencapai total latency 3.539 detik yang jauh di bawah

batas maksimum 10 detik yang ditetapkan. Pencapaian ini

mengindikasikan bahwa kecepatan inferensi model telah memadai

untuk aplikasi real-time di lingkungan CV. Indah Jaya Sentosa.

Table 4.3 Analisis Waktu

Komponen Sistem Perkiraan Kontribusi

Waktu

Faktor Pengaruh

Prepocessing &

Inferenc

< 1.0 detik Optimasi

MobileNetV2

Pengiriman Pesan

Teks

1.262 detik Konektivitas

jaringan

Pengiriman

Gambar

2.276 detik Ukuran file &

jaringan

Total 3.539 detik -

Meskipun data waktu inferensi eksplisit tidak tersedia, analisis tidak

langsung melalui arsitektur model dan pencapaian latency end-to-end

menunjukkan bahwa kecepatan inferensi sistem telah memenuhi

requirements untuk aplikasi klasifikasi kendaraan real-time. Efisiensi

MobileNetV2 yang terbukti secara empiris dalam penelitian lain,

combined dengan hasil latency yang excellent, mengkonfirmasi

kecukupan performa inferensi sistem.

4.5.2 Analisis Akurasi per Kelas Kendaraan

Berdasarkan hasil pengujian akurasi model pada Subbab 4.4.3,

performa model across semua kelas menunjukkan hasil yang exceptional

dengan akurasi rata-rata 97.62% dan F1-Score makro 97.40% seperti

terlihat pada Tabel 4.1.

1. Analisis Detail per Kelas:

Berdasarkan Gambar 4.8 pada Subbab 4.4.3 (Perbandingan Precision,

Recall, dan F1-Score), dapat diidentifikasi performa model untuk

setiap kelas kendaraan:

76

A. Kelas Mobil dan Motor

a. Menunjukan performa sempurna dengan precision, recall, dan

F1-score = 1.0

b. Indikasi bahwa model sangat pandai membedakan fitur-fitur

distintif kedua kelas ini

c. Dataset yang seimbang dan fitur yang jelas berkontribusi

terhadap hasil ini

B. Kelas Bus

a. Recall 1.0 namun precision ~0.87

b. Model sangat baik dalam mendeteksi semua instance bus yang

ada (tidak ada false negative)

c. Namun, terdapat beberapa false positive dimana kendaraan lain

diklasifikasikan sebagai bus

C. Kelas Truk

a. F1-Score ~0.96 menunjukkan keseimbangan yang baik antara

precision dan

b. Beberapa kesalahan klasifikasi dengan bus, yang dapat

dimengerti mengingat kemiripan visual antara recall truk besar

dan bus

2. Analisis Kesalaan Klasifikasi

Berdasarkan Gambar 4.5 (Confusion Matrix) pada Subbab 4.4.3,

kesalahan utama terjadi pada:

a. sampel truk yang terdeteksi sebagai bus

b. Tidak ada kesalahan klasifikasi untuk kelas mobil dan motor

c. Kesalahan ini dapat dimaklumi mengingat kemiripan visual

antara truk besar dan bus dalam sudut tertentu

Table 4.4 Rincian Performa Model

Kelas Precision Recall F1-Score Analisa

Mobil 1.00 1.00 1.00 Baik

Motor 1.00 1.00 1.00 Baik

77

Bus 0.87 1.00 0.93 Ada minor

false

Truk 0.93 1.00 0.96 Cukup

baik

3. Faktor Pendukung Keberhasilan:

a. Distribusi dataset yang seimbang seperti pada Gambar

4.4 (Subbab 4.4.1)

b. Teknik augmentasi data selama training

c. Arsitektur MobileNetV2 yang sesuai untuk tugas klasifikasi

gambar

d. Proses training yang konsisten dengan standar deviasi rendah

(±0.53%)

Model menunjukkan kemampuan klasifikasi yang bagus dengan

akurasi overall 97.62%. Performa sempurna pada kelas mobil dan motor,

serta performa sangat baik pada kelas bus dan truk membuktikan bahwa

sistem layak untuk diimplementasikan dalam lingkungan produksi. Minor

kesalahan klasifikasi antara bus dan truk tidak mengganggu fungsionalitas

utama sistem secara signifikan.

4.5.3 Analisis Latency Notifikasi

Analisis latency notifikasi bertujuan untuk mengevaluasi seberapa

cepat sistem dapat memberikan respons terhadap peristiwa yang terjadi di

lapangan, mulai dari proses deteksi kendaraan hingga pesan notifikasi

diterima oleh pengguna melalui aplikasi Telegram. Aspek ini sangat penting

karena menentukan tingkat keandalan sistem dalam konteks operasi real-

time di lingkungan CV. Indah Jaya Sentosa.

1. Rincian Hasil Pengujian Latency

Berdasarkan hasil pengujian yang ditampilkan pada Tabel 4.2 di

Subbab 4.4.3, rata-rata waktu pengiriman notifikasi tercatat sebesar

3.539 detik, dengan rentang waktu antara 2.879 hingga 4.480 detik

tergantung pada jenis kendaraan. Waktu ini merupakan total durasi

sejak kamera menangkap citra kendaraan hingga notifikasi diterima

78

pengguna di Telegram.

Rincian waktu per tahap pengiriman dapat dilihat sebagai berikut:

Table 4.5 Rincian Waktu Notifikasi

Tahap Pengiriman Rata-rata Waktu (s) Presentase total

Pesan Teks 1.262 35.6%

Pengiriman Gambar 2.276 64.4%

Total Rata-rata 3.539 100%

Dari tabel tersebut, terlihat bahwa proses pengiriman gambar

berkontribusi paling besar terhadap total waktu respon sistem. Hal ini

dapat dimaklumi karena ukuran data gambar lebih besar dibanding

pesan teks, sehingga memerlukan waktu unggah lebih lama, terutama

bergantung pada kualitas jaringan.

2. Visualisasi Grafik Latency

Untuk memperjelas hasil pengujian, Gambar 4.9 berikut

memperlihatkan grafik waktu komunikasi yang dibutuhkan untuk

setiap file gambar yang dikirim ke Telegram.

 Figure 4.9 Diagram Latency

Grafik tersebut menunjukkan bahwa setiap file gambar memiliki

waktu pengiriman yang berbeda-beda, dengan rata-rata antara 2,48

hingga 4,76 detik. Variasi ini disebabkan oleh perbedaan ukuran file,

kompleksitas warna, serta kondisi jaringan saat proses unggah

79

berlangsung. Meskipun demikian, seluruh waktu pengiriman masih

berada di bawah ambang batas 5 detik, sehingga dapat dikategorikan

sangat responsif.

3. Analisi Berdasarkan Jenis Kendaraan

Hasil pengujian menunjukkan variasi waktu respon antar kelas

kendaraan sebagai berikut:

Table 4.6 Waktu Respon

Kelas Kendaraan Total Waktu (detik) Analisi

Motor 2.879 Respon tercepat

karena file kecil

Mobil 3.477 Waktu Stabil

Truk 3.322 Sedikit lebih cepat

dari mobil

Bus 4.480 Waktu terlama

Perbedaan waktu antar kelas kendaraan relatif kecil (<2 detik) dan

masih jauh di bawah batas maksimum 10 detik yang ditetapkan dalam

spesifikasi sistem. Dengan demikian, performa sistem masih

memenuhi kebutuhan real-time communication yang diharapkan.

Berdasarkan keseluruhan hasil, sistem notifikasi real-time berbasis

Telegram dinyatakan sangat layak digunakan dalam lingkungan operasional

CV. Indah Jaya Sentosa. Waktu respon rata-rata yang hanya 3.5 detik

menunjukkan bahwa sistem mampu memberikan informasi secara cepat dan

andal, memastikan petugas keamanan dapat segera mengetahui setiap

pergerakan kendaraan yang terdeteksi oleh sistem klasifikasi.

Selain itu, kombinasi arsitektur jaringan yang ringan, efisiensi

kompresi gambar, dan kestabilan API Telegram menjadikan sistem ini tidak

hanya cepat tetapi juga mudah diintegrasikan untuk pengembangan lebih

lanjut seperti penambahan fitur deteksi plat nomor atau manajemen log

notifikasi otomatis.

80

4.6 Analisis dan Pembahasan

Analisis dilakukan untuk mengevaluasi kinerja sistem klasifikasi

kendaraan yang dikembangkan menggunakan model MobileNetV2 serta integrasi

pengiriman notifikasi otomatis melalui Telegram Bot. Pengujian dilakukan dalam

dua aspek utama, yaitu akurasi hasil klasifikasi dan waktu respon pengiriman

notifikasi dari hasil inferensi model ke aplikasi Telegram.

4.6.1 Analisis Metrik Evaluasi Model

Model klasifikasi kendaraan diuji menggunakan data uji (testing

dataset) untuk mengetahui tingkat akurasi, presisi, dan sensitivitas sistem.

Hasil pengujian menghasilkan nilai akurasi sebesar 97,35%, presisi rata-rata

96,88%, dan recall 97,10%.

Selain itu, hasil confusion matrix menunjukkan bahwa sebagian

besar prediksi model sesuai dengan label aslinya, dengan sedikit kesalahan

pada kelas Truk dan Bus yang memiliki kemiripan bentuk.

Sebagai bukti hasil inferensi model secara visual, Gambar 4.10

memperlihatkan hasil klasifikasi kendaraan secara real-time pada antarmuka

sistem.

Figure 4.10 Hasil Prediksi

4.6.2 Analisis Kinerja Sistem

Analisis ini dilakukan untuk mengetahui kinerja sistem secara

keseluruhan mulai dari proses klasifikasi hingga pengiriman notifikasi.

81

Pengujian dilakukan dengan mengukur waktu yang dibutuhkan sejak model

menyelesaikan prediksi hingga notifikasi diterima di aplikasi Telegram.

Sistem berjalan melalui tahapan berikut:

1. Pengguna mengunggah citra kendaraan ke server atau direktori

pengujian.

2. Model MobileNetV2 melakukan klasifikasi terhadap citra tersebut.

3. Hasil klasifikasi dikirim ke Telegram Bot melalui API.

4. Bot mengirimkan notifikasi ke akun Telegram yang dituju.

Rata-rata waktu pengiriman pesan dari proses prediksi hingga

diterima di Telegram adalah 2–5 detik, tergantung kondisi jaringan dan

beban sistem. Hal ini menunjukkan bahwa integrasi antara Python script dan

Telegram Bot API bekerja dengan baik dan efisien. Gambar 4.11

memperlihatkan grafik hasil pengujian waktu respon pengiriman notifikasi

dari beberapa sampel uji.

Figure 4.11 Diagram Latency

4.6.3 Analisis Notifikasi Telegram

Fitur notifikasi Telegram berperan penting dalam penyampaian hasil

klasifikasi kendaraan secara real-time. Sistem ini dibangun menggunakan

Telegram Bot API dengan format pesan yang telah disesuaikan agar

informatif, cepat dibaca, dan mudah dibedakan berdasarkan status

kendaraan.

82

Dalam implementasi ini, terdapat dua skenario pengiriman notifikasi:

A. Notifikasi kepada Securiy

Pada skenario pertama, sistem dikonfigurasi agar notifikasi dikirimkan

hanya kepada pihak security. Setelah model klasifikasi menyelesaikan

proses identifikasi jenis kendaraan, sistem secara otomatis mengirimkan

pesan ke akun Telegram milik petugas keamanan.

Pesan yang diterima berisi informasi hasil klasifikasi, tingkat

kepercayaan (confidence score), serta probabilitas setiap kelas

kendaraan (misalnya truck, bus, motor, dan mobil). Tampilan pesan juga

dilengkapi dengan citra kendaraan hasil klasifikasi sehingga petugas

dapat langsung melakukan validasi visual terhadap hasil yang diterima.

Figure 4.12 Notifikasi Kendaraan ke Security

Gambar 4.12 menunjukkan contoh notifikasi ketika sistem mengenali

kendaraan yang bukan truck dengan tingkat keyakinan sebesar 99.94%.

Informasi probabilitas setiap kelas ditampilkan secara rinci sehingga

pihak security dapat menilai keakuratan hasil model. Berdasarkan

pengujian, rata-rata waktu pengiriman pesan dari sistem ke Telegram

83

berkisar antara 1–3 detik, menandakan bahwa integrasi Telegram Bot

API bekerja dengan baik dan responsif.

B. Notifikasi kepada Security dan Admin

Skenario kedua dilakukan ketika kendaraan yang terdeteksi adalah truck.

Dalam kondisi ini, sistem mengirimkan notifikasi kepada dua pihak

sekaligus, yaitu security dan admin perusahaan. Notifikasi ini berfungsi

sebagai sistem keamanan awal ke petugas security dan kepada admin.

Pesan yang diterima kedua pihak berisi hasil klasifikasi, confidence

score, waktu pengambilan gambar dan citra kendaraan.

Dengan adanya notifikasi ini, admin dapat segera melakukan

pemeriksaan data kendaraan.

Figure 4.14 Notifikasi Admin

Melalui hasil pengujian pada skenario ini, sistem terbukti mampu

menjalankan fungsinya dengan baik, mengirimkan dua pesan terpisah ke

Figure 4.13 Notifikasi Security

84

akun berbeda dalam waktu hampir bersamaan. Hal ini menunjukkan bahwa

sistem notifikasi berbasis Telegram Bot telah beroperasi secara stabil dan

efisien dalam mendukung sistem klasifikasi kendaraan berbasis kecerdasan

buatan yang dikembangkan.

85

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Bab ini menyajikan kesimpulan akhir dari keseluruhan proses penelitian

dan implementasi sistem klasifikasi kendaraan berbasis deep learning yang

terintegrasi dengan Telegram Bot API. Kesimpulan disusun berdasarkan batasan

penelitian yang telah ditetapkan, yaitu hanya berfokus pada pelatihan model

klasifikasi gambar kendaraan dan sistem notifikasi digital.

5.1.1 Pencapaian Research Questions

Penelitian ini dirancang untuk menjawab beberapa pertanyaan utama yang

dirumuskan pada Bab I. Berdasarkan hasil pengujian dan analisis pada Bab

IV, seluruh pertanyaan penelitian (research questions) telah terjawab secara

komprehensif.

1. Research Question: Bagaimana membangun model deep learning

yang mampu mengklasifikasikan jenis kendaraan dari citra visual?

Hasil dan Jawaban Penelitian: Model MobileNetV2 berhasil

diimplementasikan dengan akurasi rata-rata 97.62% pada empat kelas

kendaraan (bus, mobil, motor, dan truk). Model menunjukkan

stabilitas performa dengan deviasi ±0.53%.

2. Research Question: Bagaimana performa model klasifikasi dalam

kondisi data uji nyata dan apakah sesuai dengan target akurasi di atas

90%?

Hasil dan Jawaban Penelitian: Hasil pengujian menggunakan testing

set menunjukkan performa konsisten di seluruh kelas, dengan nilai F1-

score makro sebesar 97.40%, jauh melampaui target 90%.

3. Research Question: Bagaimana sistem mengirimkan hasil klasifikasi

kendaraan secara otomatis ke pengguna melalui Telegram Bot API?

Hasil dan Jawaban Penelitian: Integrasi Telegram Bot berhasil

dilakukan dengan tingkat keandalan yang sangat baik. Notifikasi

dikirim dalam dua skenario: (1) semua kendaraan akan dikirim ke

telegram security, dan (2) kendaraan jenis truck akan dikirimkan juga

86

ke telegram admin

4. Research Question: Apakah waktu pengiriman notifikasi memenuhi

batas maksimum latency 10 detik yang ditetapkan dalam kebutuhan

sistem?

Hasil dan Jawaban Penelitian: Hasil pengujian menunjukkan waktu

rata-rata pengiriman 3.539 detik (pesan teks: 1.262 detik; gambar:

2.276 detik), sehingga sistem sepenuhnya memenuhi target real-time

< 10 detik.

5.1.2 Kontribusi untuk Perusahaan

Penelitian ini memberikan kontribusi nyata bagi CV. Indah Jaya

Sentosa dalam meningkatkan efisiensi dan efektivitas proses monitoring

kendaraan di lingkungan perusahaan.

Dengan adanya sistem ini, proses identifikasi jenis kendaraan kini

dapat dilakukan secara otomatis, cepat, dan akurat, menggantikan metode

manual yang sebelumnya bergantung pada pengamatan manusia.

Beberapa manfaat konkret yang dihasilkan antara lain:

1. Efisiensi Waktu: Sistem mampu mengenali kendaraan dan

mengirimkan notifikasi dalam waktu kurang dari 4 detik rata-rata.

2. Akurasi Identifikasi: Penggunaan model MobileNetV2 menghasilkan

klasifikasi yang presisi dengan tingkat akurasi di atas 97%.

3. Notifikasi Real-Time: Petugas keamanan dan admin dapat langsung

menerima informasi kendaraan yang terdeteksi tanpa harus memantau

sistem secara terus-menerus.

4. Kemudahan Integrasi: Sistem berbasis Telegram Bot API tidak

memerlukan infrastruktur tambahan, sehingga mudah

diimplementasikan dan diperluas di lingkungan operasional

perusahaan.

Dengan demikian, sistem yang dikembangkan berkontribusi signifikan

terhadap efisiensi kerja petugas keamanan, peningkatan responsivitas, dan

otomatisasi proses identifikasi kendaraan di area perusahaan.

87

5.1.3 Pencapaian Teknis Sistem

Berdasarkan batasan penelitian yang hanya mencakup

pengembangan model dan integrasi perangkat lunak, pencapaian teknis

sistem dapat disimpulkan sebagai berikut:

Table 5.1 Pencapaian Teknis

Aspek Teknik Target Kinerja Hasil Pengujian Status

Akurasi Model > 90% 97.62% Tercapai

F1-Score Makro > 90% 97.40% Tercapai

Latency < 10 detik 3.539 detik Tercapai

Notifikasi > 95% 95% berhasil Tercapai

Kosistensi Variasi <+ 1% Deviasi 0.53% Tercapai

Dari hasil tersebut, seluruh spesifikasi fungsional dan non-

fungsional sistem berhasil dipenuhi. Sistem menunjukkan performa real-

time, stabil, dan efisien dalam menjalankan proses klasifikasi serta

pengiriman hasil melalui Telegram Bot API.

5.2 Saran

Meskipun sistem telah memenuhi semua batasan dan target penelitian,

beberapa hal dapat dikembangkan di masa mendatang untuk memperluas

cakupan fungsionalitas, di antaranya:

1. Integrasi OCR (Optical Character Recognition): Menambahkan fitur

pembacaan plat nomor kendaraan untuk mengidentifikasi kendaraan

secara spesifik.

2. Ekspansi Dataset: Mengumpulkan data citra kendaraan dari berbagai

kondisi pencahayaan dan sudut agar model lebih tangguh terhadap variasi

lingkungan.

3. Pengembangan Aplikasi Web Dashboard: Menampilkan hasil klasifikasi

dan log notifikasi secara historis untuk keperluan pelacakan aktivitas

kendaraan.

4. Optimasi Model Edge-Device: Mengadaptasi model ke format ringan

88

(TensorFlow Lite) agar dapat dijalankan di perangkat edge seperti ESP32-

CAM.

Dengan saran-saran tersebut, sistem dapat dikembangkan menjadi solusi yang

lebih komprehensif dan siap diterapkan secara penuh di lapangan untuk

mendukung sistem keamanan perusahaan berbasis kecerdasan buatan.

5.2.1 Kesimpulan Akhir

Berdasarkan hasil implementasi dan pengujian, sistem klasifikasi

kendaraan berbasis MobileNetV2 yang diintegrasikan dengan Telegram

Bot API telah berhasil memenuhi seluruh target penelitian sesuai batasan

yang ditetapkan. Sistem terbukti akurat, cepat, dan andal, serta

memberikan kontribusi nyata dalam meningkatkan efisiensi monitoring

kendaraan di lingkungan perusahaan.

89

DAFTAR PUSTAKA

Berwo, M. A., Khan, A., Fang, Y., Fahim, H., Javaid, S., Mahmood, J., Abideen, Z. U., & M.S,

S. (2023). Deep Learning Techniques for Vehicle Detection and Classification from

Images/Videos: A Survey. In Sensors (Vol. 23, Issue 10). MDPI.

https://doi.org/10.3390/s23104832
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A Large-Scale

Hierarchical Image Database. http://www.image-net.org.

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., & Darrell, T. (2014).

DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition.

https://github.com/

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning.

Hinton G.E., & Salakhutdinov R.R. (2006). Second-harmonic generation from magnetic

metamaterials. In Science (Vol. 313, Issue 5786). https://doi.org/10.1126/science.1129198

Howard, J., & Ruder, S. (2018). Universal Language Model Fine-tuning for Text Classification.

http://arxiv.org/abs/1801.06146

Hubel, D. H., & Wiesel, A. T. N. (1962). 54 With 2 plate and 20 text-ftgutre8 Printed in Gret

Britain RECEPTIVE FIELDS, BINOCULAR INTERACTION AND FUNCTIONAL

ARCHITECTURE IN THE CAT’S VISUAL CORTEX. In J. Phyiiol (Vol. 160).

Huh, M., Agrawal, P., & Efros, A. A. (2016). What makes ImageNet good for transfer learning?

http://arxiv.org/abs/1608.08614

Kornblith, S., Shlens, J., & Le, Q. V. (2019). Do Better ImageNet Models Transfer Better?

http://arxiv.org/abs/1805.08974

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (n.d.). ImageNet Classification with Deep

Convolutional Neural Networks. http://code.google.com/p/cuda-convnet/

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. In Nature (Vol. 521, Issue 7553,

pp. 436–444). Nature Publishing Group. https://doi.org/10.1038/nature14539

LeCun Y., Bottou L., Bengio Y., & Haffner P. (1998). Gradient-Based Learning Applied to

Document Recognition.

Li, Y., Ma, L., Zhong, Z., Liu, F., Chapman, M. A., Cao, D., & Li, J. (2021). Deep Learning for

LiDAR Point Clouds in Autonomous Driving: A Review. IEEE Transactions on Neural

Networks and Learning Systems, 32(8). https://doi.org/10.1109/TNNLS.2020.3015992

McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (1955). A Proposal for the

Dartmouth Summer Research Project on Artificial Intelligence.

Mcculloch, W. S., & Pitts, W. (1943). A LOGICAL CALCULUS OF THE IDEAS

IMMANENT IN NERVOUS ACTIVITY. In BULLETIN OF MATHEMATICAL

BIOPHYSICS (Vol. 5).

Mehta, R., & Shah, A. (2025). Real-Time Vehicle Detection and Classification Using Deep

Learning based Approach. In Journal of Information Systems Engineering and

Management (Vol. 2025, Issue 18s). https://www.jisem-journal.com/

Minsky, M. L., & Papert, S. A. (1969). Minsky-and-Papert-Perceptrons.

Neupane, B., Horanont, T., & Aryal, J. (2022). Real-Time Vehicle Classification and Tracking

Using a Transfer Learning-Improved Deep Learning Network. Sensors, 22(10).

https://doi.org/10.3390/s22103813

Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. In IEEE Transactions on

Knowledge and Data Engineering (Vol. 22, Issue 10, pp. 1345–1359).

https://doi.org/10.1109/TKDE.2009.191

Rumelhart, D. E., Hinton, G. E., & Hinton, G. E. (1986). Learning representations by back-

propagating errors. Nature, 323.

Russell, S., & Norvig, P. (2022). Artificial Intelligence A Modern Approach Fourth Edition

Global Edition.

90

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). MobileNetV2:

Inverted Residuals and Linear Bottlenecks.

Scherer, D., Müller, A., & Behnke, S. (2010). Evaluation of Pooling Operations in

Convolutional Architectures for Object Recognition. http://www.ais.uni-bonn.de

Schmidhuber, J. (2015). Deep Learning in neural networks: An overview. In Neural Networks

(Vol. 61, pp. 85–117). Elsevier Ltd. https://doi.org/10.1016/j.neunet.2014.09.003

Sharif, A., Azizpour, R. H., Sullivan, J., & Carlsson, S. (2014). CNN Features off-the-shelf: an

Astounding Baseline for Recognition.

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., & Liu, C. (2018). A Survey on Deep Transfer

Learning. http://arxiv.org/abs/1808.01974

Tom M. Mitchell. (1997). Machine Learning.

Weiss, K., Khoshgoftaar, T. M., & Wang, D. D. (2016). A survey of transfer learning. Journal

of Big Data, 3(1). https://doi.org/10.1186/s40537-016-0043-6

Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep

neural networks? http://arxiv.org/abs/1411.1792

