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ABSTRAK 

CV. Indah Jaya Sentosa merupakan perusahaan distribusi barang yang bergantung 

pada pengelolaan arus kendaraan masuk-keluar. Namun, pencatatan manual oleh petugas 

keamanan sering menyebabkan keterlambatan laporan dan informasi, mengganggu 

efisiensi serta meningkatkan risiko operasional seperti kehilangan data pengawasan 

kendaraan krusial bagi rantai pasok. Oleh karena itu, diperlukan solusi teknologi untuk 

monitoring kendaraan secara cepat, akurat, dan real-time guna mendukung transformasi 

digital di sektor distribusi. 

Pada kerja praktek ini mengimplementasikan sistem klasifikasi kendaraan 

berbasis deep learning dengan model MobileNetV2, terintegrasi kamera untuk 

pengambilan gambar otomatis. Sistem mengklasifikasikan kendaraan menjadi empat 

kategori (truk, mobil, motor, bus) dan mengirimkan notifikasi real-time via Telegram: ke 

petugas keamanan untuk semua kendaraan, serta ke admin khusus untuk truk terkait 

distribusi. Pendekatan ini mengotomatisasi proses manual, meminimalkan kesalahan, dan 

mempercepat informasi. 

Pengujian menunjukkan model MobileNetV2, mencapai akurasi lebih 90% 

dengan waktu notifikasi kurang dari 10 detik. Sistem meningkatkan kecepatan, akurasi, 

dan integrasi monitoring di perusahaan, mendukung efisiensi petugas serta pengawasan 

distribusi. Penelitian ini berkontribusi pada penerapan deep learning untuk solusi industri 

distribusi, sebagai acuan bagi perusahaan serupa. 

Kata kunci: Artificial Intelligence, Deep learning, MobileNetV2, Klasifikasi Kendaraan, 

Pengambilan Gambar, Telegram, CV. Indah Jaya Sentosa 
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BAB I  

PENDAHULUAN 

1.1 Latar Belakang 

CV. Indah Jaya Sentosa, sebuah perusahaan yang bergerak di bidang 

distribusi barang, mengandalkan kelancaran arus kendaraan yang masuk dan 

keluar area perusahaan untuk mendukung operasional sehari-hari. Berbagai jenis 

kendaraan, seperti truk, mobil, motor, dan bus, beroperasi untuk memenuhi 

kebutuhan pengiriman barang. Namun, pencatatan data kendaraan masih 

dilakukan secara manual oleh petugas keamanan, yang menyebabkan 

keterlambatan laporan dan lambatnya penyampaian informasi kepada 

manajemen atau tim distribusi. Akibatnya, efisiensi operasional terganggu, 

terutama dalam pengawasan kendaraan truk yang berperan besar dalam distribusi 

barang. 

Tantangan ini diperparah oleh volume kendaraan yang signifikan, yang 

menuntut penanganan cepat dan akurat. Sistem manual saat ini tidak mampu 

menghasilkan data yang andal secara real-time, padahal kecepatan dan ketepatan 

informasi sangat penting dalam industri distribusi untuk mendukung 

pengambilan keputusan, seperti pengaturan jadwal pengiriman atau pemantauan 

kendaraan pengangkut barang. Ketidakefisienan ini meningkatkan risiko 

operasional, seperti keterlambatan penanganan truk pengangkut barang atau 

potensi kehilangan data penting, yang dapat mengganggu rantai pasok 

perusahaan. 

Perkembangan teknologi Artificial Intelligence (AI) dan deep learning 

menawarkan solusi untuk mengatasi masalah tersebut melalui sistem otomatis 

yang mampu mengenali dan mengklasifikasikan kendaraan dengan cepat dan 

akurat. Dengan integrasi kamera untuk pengambilan gambar dan sistem 

notifikasi real-time melalui Telegram, informasi dapat langsung sampai ke 

petugas keamanan dan manajemen tanpa menunggu laporan manual. Penerapan 

teknologi ini memungkinkan CV. Indah Jaya Sentosa untuk beradaptasi dengan 

tren otomatisasi berbasis AI di industri distribusi, sehingga meningkatkan 
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efisiensi dan daya saing operasional. 

Berdasarkan kebutuhan tersebut, kerja praktek ini bertujuan untuk 

mengembangkan sistem pemantauan kendaraan berbasis deep learning yang 

dapat mengklasifikasikan jenis kendaraan secara otomatis dan mengirimkan 

notifikasi real-time melalui Telegram. Sistem ini diharapkan dapat mengatasi 

keterbatasan sistem manual, meningkatkan akurasi dan kecepatan monitoring 

kendaraan, serta memperkuat pengawasan terhadap aktivitas distribusi barang di 

CV. Indah Jaya Sentosa. Langkah ini sekaligus mendukung upaya perusahaan 

untuk memodernisasi operasionalnya di tengah dinamika industri distribusi yang 

semakin kompetitif. 

1.2 Rumusan Masalah 

Berdasarkan latar belakang di atas, berikut adalah rumusan masalah yang dapat 

dirumuskan: 

1. Bagaimana merancang sistem berbasis deep learning menggunakan 

model MobileNetV2 untuk mengenali dan mengklasifikasikan jenis 

kendaraan (truk, mobil, motor, dan bus) secara otomatis dan akurat? 

2. Bagaimana mengintegrasikan sistem klasifikasi kendaraan dengan 

kamera untuk pengambilan gambar dan memastikan pengiriman 

notifikasi ke petugas keamanan dan admin melalui aplikasi Telegram 

dalam waktu kurang dari 10 detik? 

1.3 Batasan Masalah 

Penelitian ini dibatasi pada hal-hal berikut: 

1. Jenis Kendaraan: Sistem hanya mengenali empat jenis kendaraan: truk, 

mobil, motor, dan bus. 

2. Teknologi: Menggunakan model deep learning MobileNetV2 dan kamera 

untuk menangkap gambar kendaraan. 

3. Notifikasi: Notifikasi dikirim lewat Telegram ke petugas keamanan untuk 

semua kendaraan, dan ke admin khusus untuk truk. 

4. Lokasi: Sistem hanya diuji di area CV. Indah Jaya Sentosa. 

5. Pengukuran: Fokus pada akurasi klasifikasi > 90% dan kecepatan 
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notifikasi < 10 detik. 

6. Data: Hanya menggunakan gambar kendaraan dari kamera, tanpa data 

lain seperti suara. 

1.4 Tujuan 

Berdasarkan rumusan masalah, tujuan penelitian ini adalah: 

1. Mengembangkan sistem monitoring kendaraan otomatis berbasis deep 

learning di CV. Indah Jaya Sentosa 

2. Merancang sistem berbasis deep learning dengan model MobileNetV2 

untuk mengenali dan mengklasifikasikan jenis kendaraan (truk, mobil, 

motor, dan bus) secara akurat. 

3. Mengintegrasikan sistem klasifikasi kendaraan dengan kamera untuk 

menangkap gambar secara real-time dan mengirimkan notifikasi melalui 

Telegram dalam waktu kurang dari 10 detik. 

1.5 Manfaat 

Penelitian ini memberikan manfaat sebagai berikut: 

1. Informasi Real-time: Notifikasi melalui Telegram yang dikirim dalam 

waktu kurang dari 10 detik memastikan petugas keamanan dan admin 

mendapatkan informasi cepat untuk pengambilan keputusan. 

2. Mendukung Pengawasan Distribusi: Sistem ini membantu perusahaan 

memantau kendaraan, terutama truk yang terkait dengan distribusi 

barang, sehingga pengelolaan rantai pasok menjadi lebih baik. 

3. Meningkatkan Keamanan dan Akurasi Data: Membantu memastikan data 

kendaraan tercatat dengan benar dan aktivitas keluar-masuk kendaraan 

secara akurat. 
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BAB II  

GAMBARAN UMUM INSTANSI 

2.1 Latar Belakang Perusahaan 

 
Figure 2.1 Logo Perusahaan 

 
Figure 2.2 Lokasi Perusahaan 

CV. Indah Jaya Sentosa adalah perusahaan yang bergerak di bidang 

distribusi barang, dengan fokus pada penyediaan layanan pengiriman dan 

pengelolaan rantai pasok untuk berbagai jenis produk. Berbasis di Surabaya, 

perusahaan ini telah menjalankan operasinya selama beberapa tahun dengan 

mengandalkan jaringan distribusi yang luas dan tim operasional yang kompeten. 

Berlokasi strategis di Jalan Teluk Nibung Barat 7/20, Perak, Surabaya, Jawa 
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Timur, CV. Indah Jaya Sentosa memiliki aksesibilitas optimal ke pelabuhan dan 

jalur transportasi utama, yang mendukung kelancaran distribusi barang ke 

berbagai wilayah di Indonesia. Komunikasi dengan perusahaan dapat dilakukan 

melalui nomor telepon 081332876018 atau email 

indahjayasentosa1@yahoo.com, dengan kontak utama Yayuk Mariana, yang 

memastikan responsivitas terhadap kebutuhan pelanggan. 

CV. Indah Jaya Sentosa menghadapi tantangan operasional yang 

signifikan, terutama dalam pengelolaan arus kendaraan yang meliputi truk 

pengangkut barang, mobil, motor, dan bus, dengan rata-rata 50 kendaraan per hari. 

Proses monitoring dan pencatatan kendaraan saat ini masih dilakukan secara 

manual oleh petugas keamanan, yang sering kali menyebabkan keterlambatan 

penyusunan laporan, kesalahan input data, dan keterbatasan informasi real-time 

untuk keperluan manajerial. Kondisi ini berdampak pada efisiensi operasional, 

khususnya dalam pengawasan truk yang memainkan peran krusial dalam aktivitas 

distribusi. Untuk mengatasi tantangan tersebut, perusahaan berkomitmen untuk 

mengadopsi transformasi digital melalui penerapan teknologi kecerdasan buatan, 

seperti sistem klasifikasi kendaraan berbasis deep learning, guna meningkatkan 

akurasi dan kecepatan pengelolaan data kendaraan. 

Struktur organisasi CV. Indah Jaya Sentosa dipimpin oleh Direktur 

Utama, Yuri AS, yang bertanggung jawab atas arah strategis dan kebijakan 

perusahaan, didukung oleh Wakil Direktur Yacob Adi Saputra untuk memastikan 

koordinasi antardivisi yang efektif. Divisi Operasional, yang dipegang oleh 

Rachmad Fajar, mengelola aktivitas harian termasuk pengawasan kendaraan, 

sementara Yayuk Mariana sebagai kepala Sumber Daya Manusia mengelola 

aspek perekrutan dan kesejahteraan karyawan. Divisi IT dan Teknologi di bawah 

Ahmad Yani memainkan peran kunci dalam mengintegrasikan solusi teknologi, 

seperti sistem berbasis AI, untuk mendukung efisiensi operasional. Dengan 

pendekatan ini, CV. Indah Jaya Sentosa berupaya memperkuat posisinya sebagai 

perusahaan distribusi terpercaya yang mampu beradaptasi dengan dinamika 

industri modern. 
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2.2 Identitas Perusahaan 

Tempat  : CV. Indah Jaya Sentosa 

 Alamat   : Jl. Teluk Nibung barat 7/20, Perak, Surabaya, Jawa Timur 

Telepon  : 081332876018 

 Contact Person : Yayuk Mariana 

 Email    : indahjayasentosa1@yahoo.com 

2.3 Visi Perusahaan 

“Menjadi perusahaan distribusi terpercaya dan terdepan di Indonesia 

dengan pelayanan prima, jaringan yang luas, serta komitmen terhadap kualitas 

dan kepuasan pelanggan.” 

2.4 Misi Perusahaan 

Untuk mewujudkan visi tersebut, perusahaan berkomitmen memberikan 

pelayanan distribusi yang cepat, tepat, dan aman; menjaga kualitas produk sesuai 

standar; membangun jaringan distribusi yang luas dan efisien; mengoptimalkan 

teknologi untuk mendukung efektivitas operasional menjalin hubungan kerja 

yang baik dengan mitra bisnis serta terus meningkatkan kompetensi sumber daya 

manusia melalui pelatihan dan pengembangan berkelanjutan. 

mailto:indahjayasentosa1@yahoo.com
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2.5 Struktur Organisasi 

 
Figure 2.3 Struktur Organisasi 

Pada gambar struktur organisasi pada CV. Indah Jaya Sentosa. Setiap bagian 

memiliki tugas pokok dan fungsi masing-masing. Berikut di bawah ini adalah 

detail dari tugas pokok dan fungsinya 

1. Direktur Utama - Yuri AS Pemimpin tertinggi perusahaan yang 

bertanggung jawab penuh atas VISI, MISI, Strategi dan arah kebijakan 

perusahaan. Mengambil keputusan strategis yang berpengaruh besar 

terhadap perkembangan dan keberlangsungan usaha. Memastikan 

seluruh departemen bekerja sesuai target dan tujuan perusahaan. 

2. Wakil Direktur - Yacob Adi Saputra Mendampingi dan membantu 

Direktur Utama dalam menjalankan tugas manajerial. Menggantikan 

peran Direktur Utama saat berhalangan hadir. Mengawasi koordinasi 

antar divisi agar berjalan efisien dan efektif 

3. Keuangan dan Akuntansi - Achmad Hambali Mengelola arus kas masuk 

dan keluar perusahaan. Menyusun laporan keuangan secara berkala. 

Mengatur anggaran, pengeluaran, pajak dan memastikan kepatuhan 

terhadap regulasi keuangan. 

4. Sumber Daya Manusia (SDM) - Yayuk Mariana Mengelola perekrutan, 

pelatihan dan pengembangan karyawan. Mengatur administrasi 
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karyawan, gaji, tunjangan dan kesejahteraan pegawai. Menjaga hubungan 

kerja yang sehat dan produktif antara tim. 

5. Operasional - Rachmad Fajar Mengatur kegiatan operasional harian agar 

berjalan lancar dan efisien. Mengoptimalkan proses kerja di lapangan. 

Memastikan standar kualitas produk atau layanan terpenuhi. 

6. Pemasaran dan Penjualan - Irsya Pratiwi Menyusun strategi pemasaran 

untuk memperluas pangsa pasar. Mengelola promosi, branding dan 

hubungan dengan pelanggan. Mengawasi proses penjualan dan 

pencapaian target penjualan. 

7. Riset dan Pengembangan - Mujiah Mengembangkan inovasi produk atau 

layanan baru. Melakukan riset pasar dan analisis tren industri. 

Meningkatkan kualitas dan efisiensi produk agar tetap kompetitif. 

8. IT dan Teknologi - Ahmad Yani Mengelola infrastruktur teknologi 

perusahaan. Mengembangkan dan memelihara sistem informasi yang 

menunjang operasional. Menjaga keamanan data dan memastikan 

pemanfaatan teknologi secara optimal. 

 

 

 

 

 

 

 

 

 

 

 



9 

 

BAB III  

LANDASAN TEORI 

3.1 Konsep Dasar Deep learning 

Deep learning (Pembelajaran Mendalam) telah didefinisikan sebagai sub-

bidang dari Machine Learning yang menggunakan jaringan saraf tiruan dengan 

banyak lapisan tersembunyi (Lecun et al., 2015). Fondasi dari konsep ini adalah 

kemampuan jaringan untuk mempelajari representasi data secara hierarkis dan 

abstrak secara otomatis. Seperti yang dijelaskan oleh (Schmidhuber, 2015), 

kedalaman arsitektur inilah yang memungkinkan model untuk memecahkan 

masalah yang sangat kompleks yang sebelumnya sulit ditangani oleh teknik 

machine learning konvensional. Proses hierarkis ini dapat dianalogikan dengan 

cara kerja sistem visual otak manusia, di mana lapisan-lapisan saraf memproses 

informasi dari fitur yang sederhana (seperti tepian dan sudut) hingga yang 

semakin kompleks (seperti bentuk objek secara utuh. 

Dalam perkembangannya, keberhasilan Deep learning didorong oleh tiga 

faktor kunci: ketersediaan data dalam skala besar (big data), peningkatan daya 

komputasi (terutama dengan penggunaan GPU), serta kemajuan dalam algoritma 

dan arsitektur (Goodfellow et al., 2016). Arsitektur-arsitektur khusus 

seperti Convolutional Neural Networks (CNN) untuk data gambar dan Recurrent 

Neural Networks (RNN) untuk data sekuensial telah menjadi landasan bagi 

berbagai terobosan. Sebagai contoh, penelitian oleh (Krizhevsky et al., n.d.) pada 

kompetisi ImageNet menunjukkan bagaimana arsitektur Deep CNN dapat 

mengurangi tingkat kesalahan pengenalan gambar secara drastis, sehingga 

membuka era modern Deep learning. Dengan demikian, Deep learning tidak 

hanya menjadi tulang punggung dalam kemajuan Kecerdasan Buatan tetapi juga 

terus mentransformasi berbagai bidang seperti computer vision dan pemrosesan 

bahasa alami. 

3.1.1 Definisi dan Sejarah Singkat – Jaringan Saraf dalam Machine 

Learning 

Jaringan Saraf Tiruan (Artificial Neural Network/ANN) adalah 

sebuah model komputasi yang terinspirasi dari struktur dan fungsi biologis 
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otak manusia (Mcculloch & Pitts, 1943). Jaringan saraf didefinisikan 

sebagai prosesor terdistribusi paralel yang tersusun atas unit-unit pemroses 

sederhana (neuron) yang memiliki kecenderungan alamiah untuk 

menyimpan pengetahuan dan membuatnya tersedia untuk digunakan. Dalam 

konteks pembelajaran mesin, jaringan saraf berfungsi sebagai arsitektur 

pembelajaran yang mampu menangkap pola dan hubungan kompleks dalam 

data melalui proses pelatihan berulang. 

Perkembangan jaringan saraf dalam pembelajaran mesin telah 

melalui beberapa periode penting: 

1. Era Konsep Awal (1940-1950) 

a. Model neuron formal pertama diperlakukan oleh (Mcculloch & 

Pitts, 1943)yang mendemonstrasikan bagaimana jaringan neuron 

sederhana dapat melakukan komputasi logika. 

b. Pengembangkan perceptron, model jaringan saraf paling 

sederhana yang mampu melakukan klasifikasi pola linear.  

2. Masa Kemunduran (1970-1980) 

a. Kritik fundamental dari (Minsky & Papert, 1969) menunjukkan 

keterbatasan perceptron dalam menyelesaikan masalah non-linear 

seperti fungsi XOR, yang menyebabkan penurunan minat 

penelitian dalam bidang ini. 

b. (Rumelhart et al., 1986)) mempopulerkan kembali algoritma 

backpropagation yang efektif untuk melatih jaringan multi-layer, 

membuka jalan untuk arsitektur yang lebih dalam. 

3. Kebangkitan Deep learning (2000-Sekarang) 

a. (Hinton G.E. & Salakhutdinov R.R., 2006) memperkenalkan Deep 

Belief Networks yang menunjukkan efektivitas pelatihan layer-by-

layer untuk jaringan yang dalam. 

b. (Krizhevsky et al., n.d.) mendemonstrasikan keberhasilan Deep 

Convolutional Neural Network dalam kompetisi ImageNet, 

menandai revolusi deep learning modern. 

Perkembangan historis ini menunjukkan evolusi jaringan saraf dari konsep 
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teoretis sederhana menjadi arsitektur kompleks yang mendorong kemajuan 

signifikan dalam bidang pembelajaran mesin dan kecerdasan buatan. 

3.1.2 Perbedaan AI, Machine Learning, Deep learning 

Menurut (Russell & Norvig, 2022), ketiga konsep ini membentuk 

hubungan hierarkis yang semakin spesifik, dimana Kecerdasan Buatan 

(Artificial Intelligence) merupakan payung terluas, Machine Learning 

(ML) merupakan bagian dari AI, dan Deep learning (DL) merupakan 

implementasi khusus dari Machine Learning. 

1. Artificial Intelligence 

a. Definisi: (McCarthy et al., 1955), AI adalah bidang studi yang 

didasarkan pada konjektur bahwa setiap aspek pembelajaran atau 

fitur kecerdasan lainnya pada prinsipnya dapat dideskripsikan 

dengan begitu rincinya sehingga sebuah mesin dapat dibuat untuk 

mensimulasikannya. 

b. Cakupan: Sistem berbasis aturan, pemrograman simbolik, 

robotika, sistem pakar, dan pemrosesan bahasa alami 

c. Contoh: Sistem catur Deep Blue yang mengalahkan Garry 

Kasparov (1997) 

2. Machine Learning (ML) 

a. Definisi: Menurut (Tom M. Mitchell, 1997) ML adalah bidang 

studi yang memberikan kemampuan pada komputer untuk belajar 

tanpa diprogram secara eksplisit 

b. Cakupan: Algoritma supervised learning, unsupervised learning, 

dan reinforcement learning 

c. Karakteristik: Memerlukan feature engineering manual, bekerja 

dengan dataset yang lebih kecil 

d. Contoh: Algoritma decision tree untuk klasifikasi, SVM untuk 

regresi 

3. Deep learning (DL) 

a. Definisi: Menurut (Lecun et al., 2015), DL adalah subset ML yang 

menggunakan multiple layers untuk secara progresif mengekstrak 
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fitur-fitur level tinggi dari raw input 

b. Cakupan: Jaringan saraf dalam, convolutional neural networks, 

recurrent neural networks 

c. Karakteristik: Dapat belajar feature representation secara 

otomatis, memerlukan data dalam jumlah besar 

d. Contoh: AlphaGo yang mengalahkan champion Go dunia (2016) 

Menurut (Goodfellow et al., 2016), perbedaan mendasar terletak pada: 

1. Kompleksitas fitur: DL mampu menangkap fitur yang lebih abstrak 

dan hierarkis 

2. Feature engineering: ML membutuhkan feature engineering manual, 

sedangkan DL belajar fitur secara otomatis 

3. Kebutuhan data: DL memerlukan dataset yang jauh lebih besar untuk 

training yang efektif 

4. Kebutuhan komputasi: DL membutuhkan resources komputasi yang 

lebih intensif 

Hubungan ketiganya dapat digambarkan sebagai lingkaran 

konsentris dimana AI ⊃ ML ⊃ DL, dengan DL menjadi pendorong utama 

kemajuan AI modern berkat kemampuannya dalam menangani data yang 

kompleks dan tidak terstruktur. 

   

      Figure 3.1 Diagram Venn 
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Table 3.1 Perbandingan AI, ML dan DL 

Aspek Artificial Intelligence 

(AI) 

Machine 

Learning 

Deep learning 

Definisi  Sistem yang dapat 

melakukan tugas seperti 

manusia 

Subset AI yang 

belajar dari data 

Subset ML 

dengan jaringan 

saraf tiruan 

Pendekatan   System berbasis aturan 

hingga pembelajaran 

Algoritma 

statistic belajar 

dari data 

Jaringan neural 

dalam belajar 

fitur otomatis 

Data Tidak selalu butuh data 

besar 

Butuh data 

terstruktur 

menengah 

Butuh data 

sangat besar 

Contoh  Siri, Alexa, robotika SVM, Decision 

Tree 

CNN, RNN, 

Transformers 

Aplikasi   Game AI, chatbot 

sederhana 

Filter spam Pengenalan 

gambar, NLP 

Pemahaman hierarkis ini menjadi dasar pemilihan Deep learning sebagai 

pendekatan dalam kerja praktik ini, karena tugas klasifikasi gambar 

kendaraan memerlukan kemampuan untuk mempelajari fitur-fitur hierarkis 

dan kompleks secara otomatis dari data citra, yang merupakan keunggulan 

utama DL dibanding ML konvensional. 

3.2 Convolutional Neural Network (CNN) 

Convolutional Neural Network (CNN) atau Jaringan Saraf Konvolusional 

merupakan arsitektur deep learning yang dominan dalam pemrosesan data grid 

seperti gambar. Arsitektur ini terinspirasi dari organisasi visual cortex pada otak 

binatang (Hubel & Wiesel, 1962) dan dirancang untuk mempelajari hierarki fitur 

secara otomatis sambil mempertahankan konteks spasialnya. Keunggulan utama 

CNN, seperti yang dijelaskan oleh (LeCun Y. et al., 1998), terletak pada tiga 

properti arsitekturalnya: sparse connectivity, yang membatasi koneksi neuron 

hanya pada wilayah lokal (local receptive field); weight sharing, di mana filter 

yang sama digunakan pada seluruh area input untuk mendeteksi pola tertentu 

sehingga mengurangi parameter secara signifikan (Goodfellow et al., 2016); 

dan hierarchical learning, di mana lapisan awal belajar fitur rendah (seperti tepi 

dan tekstur) yang kemudian digabungkan di lapisan dalam menjadi fitur tinggi 

yang lebih (Krizhevsky et al., n.d.). Proses ini umumnya diperkuat dengan 
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lapisan pooling (misalnya max-pooling) untuk menciptakan invariansi terhadap 

translasi dan distorsi kecil serta mengurangi dimensi komputasi (Scherer et al., 

2010). Keberhasilan praktis CNN modern dipopulerkan oleh (Krizhevsky et al., 

n.d.) melalui model AlexNet yang memenangkan kompetisi ImageNet, dan sejak 

itu varian seperti VGG, ResNet, dan Transformer-based Vision menjadi tulang 

punggung dalam bidang computer vision, mulai dari pengenalan objek hingga 

segmentasi medis. 

3.2.1 Arsitektur Dasar CNN - Jaringan khusus pemrosesan gambar 

Convolutional Neural Network (CNN) dirancang khusus untuk 

pemrosesan gambar dengan arsitektur yang meniru sistem penglihatan 

biologis. Arsitektur dasar CNN terdiri dari beberapa komponen utama yang 

bekerja secara hierarkis untuk mengekstrak fitur dari gambar. Menurut 

(LeCun Y. et al., 1998), arsitektur CNN modern typically terdiri dari lapisan 

konvolusi, lapisan aktivasi, lapisan pooling, dan lapisan fully connected. 

Lapisan Konvolusi (Convolutional Layer) merupakan inti dari CNN 

dimana filter-filter konvolusi diaplikasikan untuk mendeteksi pola-pola 

lokal dalam gambar. Setiap filter bertugas mengenali fitur tertentu seperti 

tepi, sudut, atau tekstur. Proses konvolusi ini mempertahankan hubungan 

spasial antar piksel sambil membagi parameter yang sama di seluruh bagian 

gambar (Goodfellow et al., 2016). 

Lapisan Aktivasi (Activation Layer) biasanya menggunakan fungsi 

ReLU (Rectified Linear Unit) untuk memperkenalkan non-linearitas ke 

dalam jaringan. Fungsi ini membantu jaringan mempelajari hubungan yang 

lebih kompleks dalam data (Krizhevsky et al., n.d.). 

Lapisan Pooling berfungsi untuk mengurangi dimensi spasial 

representasi fitur sambil mempertahankan informasi yang paling penting. 

Max-pooling adalah teknik yang paling umum digunakan, dimana hanya 

nilai maksimum dari setiap region yang dipilih (Scherer et al., 2010). 

Lapisan Fully Connected di akhir arsitektur bertugas untuk 

melakukan klasifikasi berdasarkan fitur-fitur yang telah diekstrak oleh 

lapisan-lapisan sebelumnya. Seluruh neuron pada lapisan ini terhubung ke 
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semua neuron di lapisan sebelumnya (LeCun Y. et al., 1998) 

Arsitektur ini memungkinkan CNN belajar fitur-fitur dari yang 

sederhana hingga kompleks secara hierarkis, membuatnya sangat efektif 

untuk tugas-tugas computer vision seperti klasifikasi gambar, deteksi objek, 

dan segmentasi semantik. 

 

Figure 3.2 Arsitektur CNN 

3.2.2 Layer-layer dalam CNN - Konvolusi, Pooling, Fully Connected 

1. Lapisan Konvolusi (Convolutional Layer) 

Lapisan konvolusi merupakan komponen fundamental dalam CNN 

yang berfungsi untuk mengekstraksi fitur dari gambar input. Menurut 

(LeCun Y. et al., 1998), lapisan ini menggunakan sejumlah filter 

(kernel) yang melakukan operasi konvolusi dengan menggeser seluruh 

area input. 

Rumus Operasi Konvolusi: 

𝑌{𝑖,𝑗} =  (𝑋 ∗ 𝑊){𝑖,𝑗} =  ∑ ∑ 𝑋{𝑖+𝑚,𝑗+𝑛}

𝑛𝑚

⋅ 𝑊{𝑚,𝑛} +  𝑏 

Di mana: 

a. 𝑌{𝑖,𝑗} = output pada posisi {𝑖, 𝑗} 

b. 𝑋 = input feature map 

c. 𝑊 = filter/kernel konvolusi 

d. 𝑏 = bias term 

e. ∑∑ = penjumlahan ganda seukuran kernel 

Setiap filter bertugas mendeteksi pola spesifik seperti tepi, sudut, atau 

tekstur tertentu. Proses konvolusi menghasilkan feature maps yang 
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merepresentasikan respons filter terhadap berbagai bagian gambar. 

Keunggulan utama lapisan ini adalah parameter sharing, dimana filter 

yang sama digunakan di seluruh bagian gambar, sehingga secara 

signifikan mengurangi jumlah parameter yang harus dipelajari 

(Goodfellow et al., 2016). 

2. Lapisan Pooling (pooling Layer) 

Lapisan pooling berfungsi untuk mengurangi dimensi spasial dari 

feature maps sambil mempertahankan fitur-fitur yang paling 

informatif. Menurut (Scherer et al., 2010), max-pooling merupakan 

teknik yang paling umum digunakan. 

Rumus Max Pooling: 

𝑌{𝑖,𝑗} =  𝑚𝑎𝑥(𝑋{𝑖×𝑠∶ 𝑖×𝑠 + 𝑘,; 𝑗×𝑠∶ 𝑗×𝑠 + 𝑘}) 

Di mana: 

a. 𝑠 = stride (langkah pergeseran) 

b. 𝑘 = ukuran kernel pooling 

c. 𝑚𝑎𝑥 = operasi pencarian nilai maksimum 

Lapisan ini memberikan beberapa keuntungan penting: pertama, 

mengurangi komputasi dengan menurunkan dimensi data; kedua, 

membuat representasi fitur lebih invariant terhadap translasi kecil dan 

distorsi; ketiga, membantu mencegah overfitting dengan mengurangi 

jumlah parameter (Krizhevsky et al., n.d.). 

3. Lapisan Aktivasi ReLU 

Fungsi aktivasi ReLU biasanya diterapkan setelah operasi konvolusi 

untuk memperkenalkan non-linearitas. 

Rumus Fungsi ReLU: 

𝑓(𝑥) =  𝑚𝑎𝑥(0, 𝑥) 

4. Lapisan Fully Connected (Fully Connected Layer) 

Lapisan fully connected biasanya ditempatkan di akhir arsitektur CNN 

dan berfungsi untuk melakukan klasifikasi berdasarkan fitur-fitur yang 

telah diekstrak. Pada lapisan ini, setiap neuron terhubung ke semua 

neuron di lapisan sebelumnya, mirip dengan jaringan saraf tradisional 
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(LeCun Y. et al., 1998). 

Rumus Fully Connected: 

𝑧 =  𝑊 ⋅ 𝑎 +  𝑏 

Di mana: 

a. 𝑊 = weight matrix 

b. 𝑎 = input vector dari lapisan sebelumnya 

c. 𝑏 = bias term 

d. 𝑧 = output sebelum aktivasi 

Keempat komponen utama ini bekerja secara sinergis. Lapisan 

konvolusi mengekstraksi fitur hierarkis, fungsi aktivasi (seperti ReLU) 

memperkenalkan non-linearitas, lapisan pooling mereduksi dimensi dan 

meningkatkan invariansi, serta lapisan fully connected melakukan 

interpretasi akhir dengan fungsi softmax untuk klasifikasi. 

Pemahaman mendetail tentang fungsi dan operasi matematis setiap 

layer dalam CNN ini menjadi landasan untuk menganalisis 

arsitektur MobileNetV2 yang digunakan, serta untuk melakukan proses fine-

tuning yang optimal pada model. 

3.3 Transfer Learning 

Transfer Learning (Transfer Pembelajaran) adalah teknik dalam deep 

learning di mana model yang telah dilatih sebelumnya (pre-trained model) pada 

dataset besar digunakan sebagai titik awal untuk menyelesaikan tugas yang serupa 

atau terkait (Pan & Yang, 2010). Pendekatan ini memanfaatkan pengetahuan yang 

telah dipelajari model dari data sebelumnya, sehingga mengurangi kebutuhan data 

pelatihan dan waktu komputasi yang signifikan (Weiss et al., 2016). Dalam 

konteks klasifikasi gambar, model seperti MobileNetV2, yang telah dilatih pada 

dataset ImageNet yang berisi jutaan gambar, dapat diadaptasi untuk mengenali 

objek spesifik seperti kendaraan dengan melakukan pelatihan ulang (fine-tuning) 

pada lapisan tertentu. 

Konsep dasar transfer learning didasarkan pada asumsi bahwa fitur-fitur 

yang dipelajari pada tugas sumber (source task) dapat ditransfer ke tugas target 

(target task) yang memiliki karakteristik serupa (Weiss et al., 2016). Dalam 
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klasifikasi gambar, lapisan awal model pre-trained umumnya telah belajar 

mendeteksi fitur rendah seperti tepi, sudut, dan tekstur, yang bersifat generik dan 

dapat diterapkan pada berbagai jenis gambar (Yosinski et al., 2014). Sementara 

itu, lapisan yang lebih dalam menangkap fitur tingkat tinggi yang lebih spesifik 

terhadap dataset asli. 

1. Keunggulan transfer learning meliputi: 

a. Efisian Data: Tidak memerlukan dataset yang sangat besar karena model 

telah mempelajari fitur dasar dari dataset sumber (Tan et al., 2018). 

b. Efisiensi Waktu: Waktu pelatihan lebih singkat dibandingkan melatih 

model dari awal (from scratch) (Huh et al., 2016). 

c. Kinerja yang Lebih Baik: Model pre-trained yang sudah konvergen pada 

dataset besar memberikan initial weight yang baik, seringkali 

menghasilkan akurasi yang lebih tinggi pada dataset target, terutama 

ketika dataset target terbatas (Kornblith et al., 2019). 

d. Sumber Daya Komputasi yang Lebih Rendah: Mengurangi kebutuhan 

GPU dan daya komputasi karena tidak perlu melatih seluruh arsitektur dari 

awal (Howard & Ruder, 2018). 

2. Terdapat dua pendekatan umum dalam menerapkan transfer learning: 

a. Feature Extraction: Lapisan konvolusi model pre-trained digunakan 

sebagai ekstraktor fitur yang tetap (fixed feature extractor). Hanya 

lapisan classifier (biasanya lapisan fully connected di akhir) yang diganti 

dan dilatih ulang menggunakan dataset target (Sharif et al., 2014). 

b. Fine-Tuning: Setelah melakukan feature extraction, beberapa lapisan 

konvolusi terakhir dari model pre-trained juga "dilonggarkan" (unfreeze) 

dan dilatih ulang bersama dengan classifier baru pada dataset target 

(Donahue et al., 2014). Ini memungkinkan model untuk menyesuaikan 

fitur tingkat tingginya agar lebih spesifik terhadap tugas baru. 

Pada penelitian ini, pendekatan transfer learning diterapkan dengan 

menggunakan model MobileNetV2 yang telah dilatih sebelumnya pada 

dataset ImageNet (Sandler et al., 2018). Lapisan classifier asli diganti dengan 

lapisan baru yang disesuaikan untuk klasifikasi empat jenis kendaraan (truk, 
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mobil, motor, bus). Selanjutnya, dilakukan proses fine-tuning pada sebagian 

lapisan konvolusi untuk mengoptimalkan kinerja model pada dataset kendaraan 

CV. Indah Jaya Sentosa. 

 

Figure 3.3 Diagram Transfer Learning 

Diagram diatas mengilustrasikan proses transfer learning yang diterapkan 

dalam penelitian ini. Proses dimulai dengan model pre-trained MobileNetV2 yang 

telah dilatih pada dataset ImageNet (Deng et al., 2009). Lapisan classifier asli 

dihapus dan diganti dengan arsitektur baru yang terdiri dari global average 

pooling dan lapisan dense dengan 4 neuron output sesuai dengan kelas kendaraan 

target (Sandler et al., 2018). 

Proses fine-tuning kemudian dilakukan dengan menggunakan dataset 

kendaraan CV. Indah Jaya Sentosa, dimana hanya lapisan tertentu yang dilatih 

ulang untuk mengadaptasi model ke tugas klasifikasi kendaraan spesifik 

(Yosinski et al., 2014). Pendekatan ini memungkinkan model memanfaatkan 

pengetahuan yang telah dipelajari dari dataset besar sambil menyesuaikan diri 

dengan karakteristik dataset target. 

Keuntungan proses ini: 
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a. Waktu pelatihan lebih cepat 

b. Kebutuhan data lebih sedikit 

c. Kinerja klasifikasi yang lebih optimal 

Diagram ini mempresentasikan alur sistematis yang diterapkan untuk 

mengembangkan sistem klasifikasi kendaraan berbasis deep learning pada 

CV. Indah Jaya Sentosa. 

3.3.1 Konsep Transfer Learning 

Konsep dasar transfer learning dalam konteks deep learning adalah 

memanfaatkan model yang telah dilatih sebelumnya (pre-trained model) 

pada dataset berskala besar seperti ImageNet, yang berisi lebih dari 14 juta 

gambar dengan 1000 kelas (Deng et al., 2009). Model ini telah mempelajari 

representasi fitur visual yang kaya dan hierarkis, mulai dari fitur rendah 

seperti tepi dan tekstur, hingga fitur tinggi yang spesifik seperti bentuk objek 

dan bagian-bagiannya (Yosinski et al., 2014). 

Dalam pendekatan ini, arsitektur model beserta bobot yang telah 

diperoleh selama pelatihan sebelumnya dipertahankan, sementara lapisan 

klasifikasi akhir dimodifikasi untuk disesuaikan dengan tugas yang baru. 

Menurut (Tan et al., 2018), terdapat beberapa alasan mendasar mengapa 

pendekatan ini efektif: 

1. Fitur Umum yang Dapat Ditransfer: Lapisan konvolusi awal dalam 

CNN cenderung mempelajari fitur-fitur umum seperti detector tepi, 

blob, dan tekstur yang relevan untuk hampir semua tugas visi 

komputer. 

2. Hirarki Fitur yang Dipelajari: Lapisan yang lebih dalam mempelajari 

fitur yang semakin spesifik, namun masih dapat digunakan untuk 

tugas-tugas yang mirip dengan dataset asli. 

3. Efisiensi Komputasi: Dengan menggunakan bobot yang telah dilatih 

sebelumnya, proses konvergensi menjadi lebih cepat dibandingkan 

dengan inisialisasi acak. 

Pada penelitian ini, model MobileNetV2 (Sandler et al., 2018) yang 

telah dilatih pada ImageNet dipilih sebagai dasar untuk sistem 
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klasifikasi kendaraan. Pemilihan ini didasarkan pada efisiensi 

komputasi dan ukuran model yang ringan, sehingga cocok untuk 

aplikasi real-time. 

4. Proses Adaptasi model: 

a. Lapisan fully connected akhir dari model asli dihapus 

b. Ditambahkan lapisan global average pooling 

c. Lapisan klasifikasi baru dengan 4 neuron output (sesuai kelas 

kendaraan: truk, mobil, motor, bus) ditambahkan 

d. Hanya lapisan klasifikasi yang dilatih pada tahap awal, sementara 

lapisan konvolusi dibekukan (frozen) 

Pendekatan ini memungkinkan sistem memanfaatkan pengetahuan 

yang telah dipelajari model dari dataset besar, sementara tetap dapat 

beradaptasi dengan tugas spesifik klasifikasi kendaraan pada CV. Indah Jaya 

Sentosa. 

3.3.2 Keuntungan Menggunakan Model Pre-trained 

Penggunaan model pre-trained dalam transfer learning 

memberikan beberapa keuntungan signifikan dibandingkan dengan 

pelatihan model dari awal (from scratch). Menurut (Weiss et al., 2016), 

keuntungan-keuntungan tersebut meliputi: 

1. Pengurangan Kebutuhan Data 

Model pre-trained telah mempelajari fitur-fitur dasar dari dataset yang 

sangat besar, sehingga memungkinkan pelatihan yang efektif 

meskipun dengan dataset target yang terbatas (Huh et al., 2016). Pada 

konteks penelitian ini, dataset kendaraan CV. Indah Jaya Sentosa yang 

relatif kecil dapat dimanfaatkan secara optimal tanpa perlu 

mengumpulkan puluhan ribu gambar baru. 

2. Efisiensi Waktu Pelatihan 

Proses konvergensi model menjadi lebih cepat karena inisialisasi 

bobot sudah mendekati solusi optimal. Menurut (Kornblith et al., 

2019), model pre-trained dapat mencapai kinerja yang baik dalam 

epoch pelatihan yang lebih sedikit dibandingkan inisialisasi acak. 
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3. Kinerja yang Lebih Baik 

Model yang diinisialisasi dengan bobot pre-trained cenderung 

mencapai akurasi yang lebih tinggi dan generalisasi yang lebih baik 

(Yosinski et al., 2014). Hal ini terutama penting untuk dataset dengan 

variasi terbatas seperti dalam klasifikasi kendaraan. 

4. Stabilitas Pelatihan 

Inisialisasi dengan bobot pre-trained memberikan stabilitas numerik 

selama pelatihan, mengurangi masalah seperti vanishing/exploding 

gradients (Tan et al., 2018). 

5. Efisiensi Komputasi 

Mengurangi kebutuhan sumber daya komputasi karena tidak perlu 

melatih seluruh arsitektur dari awal (Howard & Ruder, 2018). Hal ini 

sangat menguntungkan untuk penerapan di lingkungan dengan sumber 

daya terbatas. 

6. Transfer Pengetahuan Silang 

Model dapat mentransfer pengetahuan dari domain sumber 

(ImageNet) ke domain target (kendaraan) meskipun terdapat 

perbedaan karakteristik (Pan & Yang, 2010). 

Dalam implementasi sistem klasifikasi kendaraan ini, penggunaan 

MobileNetV2 pre-trained memungkinkan pencapaian akurasi di atas 90% 

dengan dataset pelatihan yang relatif kecil, serta waktu inferensi yang cepat 

untuk aplikasi real-time. 

3.4 MobileNetV2 

MobileNetV2 merupakan pengembangan dari MobileNetV1 yang 

diperkenalkan oleh Google dengan fokus pada peningkatan efisiensi model untuk 

perangkat mobile. Arsitektur ini menggunakan dua konsep utama yaitu inverted 

residuals dan linear bottlenecks yang memungkinkan model menjadi lebih ringan 

dan cepat tanpa mengorbankan akurasi secara signifikan. 

Inverted Residuals menyelesaikan masalah pada residual block tradisional 

dengan membalik urutan operasi: dari kompresi-ekspansi menjadi ekspansi-
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kompresi. Pada inverted residual, input pertama kali diekspansi dengan konvolusi 

1×1, kemudian dilakukan depthwise convolution 3×3, dan terakhir dikompresi 

dengan konvolusi 1×1. Pendekatan ini mempertahankan lebih banyak informasi 

selama transformasi fitur.  

Linear Bottlenecks mengatasi masalah hilangnya informasi pada dimensi 

rendah yang disebabkan oleh fungsi aktivasi ReLU. Dengan menggunakan fungsi 

linear pada layer bottleneck terakhir, MobileNetV2 mencegah kerusakan informasi 

dalam ruang dimensi rendah, sehingga mempertahankan kualitas fitur yang 

dihasilkan. 

Kombinasi kedua teknik tersebut membuat MobileNetV2 sangat cocok 

untuk aplikasi klasifikasi gambar dan deteksi objek real-time pada perangkat 

mobile. Model ini mencapai trade-off optimal antara akurasi dan kecepatan, 

dengan parameter 30% lebih sedikit dibanding MobileNetV1 namun dengan 

akurasi yang lebih tinggi. Keunggulan ini membuat MobileNetV2 banyak diadopsi 

dalam berbagai aplikasi computer vision pada perangkat dengan sumber daya 

terbatas. 

 

Figure 3.4 Arsitektur MobileNetV2 

3.4.1 Arsitektur dan Keunggulan - Ringan untuk Perangkat Mobile 

MobileNetV2 memiliki arsitektur yang secara khusus dirancang 

untuk optimasi pada perangkat mobile dengan sumber daya komputasi 

terbatas. Arsitektur ini dibangun berdasarkan dua inovasi fundamental: 

1. Inverted Residual Blocks 
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Blok ini merupakan penyempurnaan dari residual block tradisional 

dengan membalik aliran dimensi. Strukturnya terdiri dari: 

a. Ekspansi: Konvolusi 1×1 untuk meningkatkan dimensi channel 

(biasanya ekspansi 6x) 

b. Depthwise Convolution: Konvolusi 3×3 yang beroperasi secara 

terpisah pada setiap channel 

c. Proyeksi: Konvolusi 1×1 untuk mengecilkan kembali dimensi 

channel 

Berbeda dengan residual block konvensional yang mengecilkan 

dimensi terlebih dahulu, inverted residual justru memperluas 

representasi fitur sebelum melakukan operasi konvolusi depthwise, 

sehingga mempertahankan lebih banyak informasi selama proses 

transformasi. 

 

Figure 3.5 Arsitektur Inverted Residual Block 

2. Linear Bottlenecks 

Konsep ini mengatasi masalah yang timbul dari penggunaan fungsi 

aktivasi ReLU pada dimensi rendah. Pada ruang berdimensi rendah, 

ReLU dapat menyebabkan hilangnya informasi yang irreversibel. 

MobileNetV2 mengatasi ini dengan: 

a. Menggunakan fungsi aktivasi linear pada layer bottleneck terakhir 

b. Mencegah kerusakan informasi dalam subspace berdimensi 

rendah 
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c. Mempertahankan kapasitas representasi model 

3. Keunggulan untuk Perangkat Mobile 

a. Efisiensi Parameter: MobileNetV2 menggunakan 30% lebih sedikit 

parameter dibandingkan MobileNetV1, dengan 3.4 juta parameter 

pada konfigurasi standar. 

b. Kecepatan Inferensi: Menggunakan depthwise separable 

convolution yang mengurangi operasi komputasi hingga 8-9 kali 

dibanding konvolusi standar. 

c. Konsumsi Daya Rendah: Optimasi arsitektur memungkinkan 

operasi yang lebih efisien dalam penggunaan daya baterai 

perangkat mobile. 

d. Akurasi Terjaga: Meskipun ringan, model ini mempertahankan 

akurasi yang kompetitif untuk berbagai tugas vision, dengan 

mencapai 72.0% top-1 accuracy pada ImageNet dataset. 

3.4.2 Aplikasi dalam Klasifikasi Gambar - Deteksi Objek Real-time 

MobileNetV2 telah menjadi fondasi utama untuk berbagai aplikasi 

klasifikasi gambar dan deteksi objek real-time berkat efisiensi 

komputasinya yang tinggi. Aplikasi-aplikasi ini memanfaatkan kemampuan 

MobileNetV2 dalam memproses data visual dengan cepat dan akurat pada 

perangkat berdaya terbatas. 

1. Integrasi dengan Detektor Objek Modern 

MobileNetV2 umumnya digunakan sebagai backbone feature 

extractor yang dikombinasikan dengan detektor objek seperti: 

A. SSD (Single Shot MultiBox Detector) 

a. MobileNetV2-SSD memberikan kecepatan deteksi >30 FPS 

pada smartphone 

b. Cocok untuk aplikasi real-time dengan akurasi memadai 

c. Digunakan dalam deteksi wajah, kendaraan, dan objek sehari-

hari 

B. YOLO (You Only Look Once) 

a. MobileNetV2 sebagai pengganti backbone konvensional 
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YOLO 

b. Mengurangi komputasi secara signifikan sambil 

mempertahankan akurasi 

c. Ideal untuk aplikasi mobile dengan kebutuhan kecepatan 

tinggi 

2. Aplikasi Real-world 

A. Deteksi Objek dalam Video Real-time 

a. Pemrosesan frame-by-frame dengan latency rendah 

b. Aplikasi keamanan dan surveillance pada perangkat mobile 

c. Analisis video live streaming untuk konten otomatis 

B. Augmented Reality (AR) 

a. Deteksi dan pelacakan objek untuk overlay digital 

b. Aplikasi retail: virtual try-on, product recognition 

c. Gaming intercative yang responsife 

C. Kendaraan Otonom dan ADAS (Advanced Driver Assistance 

System) 

a. Deteksi pejalan kaki, kendaraan, rambu lalu lintas 

b. Pemrosesan real-time pada embedded systems 

c. Sistem peringatan dini pada kendaraan 

D. Kinerja dan Optimasi 

Pada test benchmark, MobileNetV2 mencapai; 

a. Kecepatan: 25-40 ms per inference pada GPU mobile 

b. Akurasi: 72-75% top-1 accuracy pada ImageNet 

c. Efisiensi: Konsumsi memori <10MB untuk model terkompresi 

3.5 Telegram Bot API 

Telegram Bot API merupakan sebuah antarmuka pemrograman aplikasi 

yang memungkinkan pengembang perangkat lunak untuk membuat dan 

mengelola program otomatis (bot) yang dapat berinteraksi dengan pengguna di 

dalam platform Telegram. Konsep dasarnya berpusat pada arsitektur client-server 

di mana bot, yang diidentifikasi dengan token autentikasi yang unik, 

berkomunikasi dengan server Telegram melalui metode webhook atau long 
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polling untuk mengirim dan menerima pesan. Webhook berfungsi sebagai 

mekanisme notifikasi real-time, di mana server Telegram secara proaktif 

mengirimkan update (seperti pesan dari pengguna) ke URL endpoint yang telah 

ditentukan, sehingga memungkinkan respons yang cepat dan efisien. Sementara 

itu, long polling merupakan metode alternatif di mana bot secara periodik 

menanyakan (polling) server untuk memeriksa apakah ada update baru. Melalui 

API ini, sebuah bot dapat melakukan berbagai fungsi inti, mulai dari mengelola 

percakapan pribadi, grup, hingga saluran (channel), mengirimkan berbagai jenis 

konten seperti teks, gambar, dan dokumen, serta menyediakan antarmuka 

interaktif bagi pengguna melalui keyboard kustom dan tombol inline. 

  

Figure 3.6 Diagram alur Telegram Bot API 

Konsep webhook dan arsitektur messaging yang dijelaskan di atas 

diimplementasikan secara langsung dalam sistem untuk memastikan notifikasi 

klasifikasi kendaraan dapat terkirim secara real-time dan andal kepada petugas 

keamanan dan admin. 

3.5.1 Konsep Webhook dan Messaging 

1. Konsep Webhook 

Webhook merupakan mekanisme callback HTTP yang memungkinkan 

aplikasi menerima data secara real-time dari sumber eksternal. Dalam 

konteks Telegram Bot API, webhook berfungsi sebagai endpoint URL 

yang ditentukan developer untuk menerima update pesan secara 
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otomatis dari server Telegram. Webhook menggunakan paradigma 

push notification dimana server Telegram secara proaktif 

mengirimkan data ke endpoint yang telah ditentukan setiap kali 

terdapat event baru, seperti pesan masuk atau interaksi pengguna. 

Implementasi webhook menghilangkan kebutuhan untuk continuously 

polling server, sehingga mengurangi latency dan konsumsi resource. 

Konfigurasi webhook mengharuskan developer menyediakan URL 

HTTPS yang valid dengan sertifikat SSL, dimana server Telegram 

akan mengirimkan payload JSON berisi update melalui metode POST. 

2. Konsep Messaging 

Messaging dalam Telegram Bot API mengacu pada pertukaran data 

terstruktur antara bot dan pengguna melalui berbagai format 

konten.  Sistem messaging Telegram mendukung multiplexing content 

types termasuk text, gambar, video, dokumen, lokasi, dan konten 

interaktif. Setiap pesan dikemas dalam objek JSON yang mengandung 

metadata seperti chat ID, timestamp, user information, dan content 

payload. Arsitektur messaging Telegram mengimplementasikan 

queue management system dengan garansi delivery dan mekanisme 

retry untuk memastikan reliabilitas pesan. Model messaging ini 

memungkinkan bot untuk mengirim pesan secara asinkronus, 

mendukung inline keyboards, serta mengelola threaded conversations 

dalam grup dan channel. 

3. Integrasi Webhook dan Messaging 

Integrasi antara webhook dan messaging membentuk siklus 

komunikasi real-time dimana webhook berperan sebagai input channel 

dan messaging sebagai output channel.  ketika pengguna mengirim 

pesan ke bot, server Telegram mem-forward payload tersebut ke 

webhook endpoint, kemudian bot memproses permintaan dan 

mengirim respons balik melalui messaging API. Integrasi ini 

mencapai average latency di bawah 100ms untuk pesan teks standar, 

dengan throughput mencapai ribuan pesan per detik pada skala 
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enterprise. 

3.5.2 Integrasi dengan Aplikasi External 

1. Konsep Integrasi dengan Aplikasi External 

Integrasi Telegram Bot dengan aplikasi external merupakan 

paradigma dimana bot berfungsi sebagai interface yang 

menghubungkan pengguna Telegram dengan sistem eksternal melalui 

API gateway. Integrasi ini memanfaatkan bot sebagai middleware 

yang menerima perintah dari pengguna, meneruskannya ke sistem 

eksternal, dan mengembalikan respons ke pengguna. Implementasi bot 

modern mengintegrasikan minimal tiga sistem eksternal berbeda, 

dengan pola arsitektur yang umum adalah microservices-based API 

composition. 

2. Metode Integrasi 

RESTful API Integration menjadi pendekatan paling dominan bot 

mengonsumsi REST endpoints dari aplikasi external menggunakan 

HTTP methods. Implementasi mencakup authentication mechanisms 

seperti OAuth 2.0, API keys, dan JWT tokens untuk mengamankan 

komunikasi antara bot dan sistem eksternal.  Implementasi rate 

limiting, request signing, dan encrypted payload untuk mencegah 

security breaches. 

Webhook-based Event Processing memungkinkan integrasi real-time 

dengan sistem eksternal.  Bot dapat dikonfigurasi untuk menerima 

webhook calls dari aplikasi external, memungkinkan notifikasi 

proaktif dan event-driven interactions. pola ini mengurangi latency 

hingga 60% dibanding traditional polling methods. 

3. Aplikasi dan Use Cases 

Dalam sektor e-commerce, integrasi bot dengan payment gateways, 

inventory management systems, dan order processing platforms. Bot 

berfungsi sebagai conversational interface yang memproses orders, 

mengecek ketersediaan produk, dan mengelola transaksi pembayaran 
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secara real-time. 

Di bidang customer service, integrasi dengan CRM systems seperti 

Salesforce dan HubSpot, dimana bot menangani tier-1 support 

inquiries, membuat support tickets, dan menyinkronkan conversation 

history dengan customer database. 

Untuk automation workflows, Enterprise integrasi dengan tools 

seperti Zapier, IFTTT, dan custom internal systems untuk 

mengotomasi business processes seperti approval workflows, 

notification systems, dan data synchronization across platforms. 

4. Arsitektur dan Best Practices 

Arsitektur hybrid yang menggabungkan webhook dan API calls 

direkomendasikan untuk menyeimbangkan beban real-time 

processing dan batch operations. Implementasi circuit breaker pattern 

dan retry mechanisms penting untuk menjaga reliability. 

3.6 Computer Vision untuk Klasifikasi Kendaraan 

Berdasarkan survei komprehensif oleh (Berwo et al., 2023) mengenai 

teknik deep learning untuk deteksi dan klasifikasi kendaraan dari 

gambar/video, computer vision (CV) telah membuktikan diri sebagai teknologi 

kunci dalam sistem klasifikasi kendaraan otomatis. Survei tersebut 

mengungkapkan bahwa implementasi CV berbasis deep learning tidak hanya 

mampu mencapai akurasi tinggi dalam beberapa kasus bahkan melampaui 95% 

pada dataset standar tetapi juga menunjukkan kemajuan signifikan dalam hal 

efisiensi komputasi dan keandalan di berbagai kondisi lingkungan. Perkembangan 

terbaru dalam bidang ini didominasi oleh arsitektur CNN modern, di 

mana EfficientNet dilaporkan mencapai akurasi 96,2%, sementara MobileNetV2 

yang juga menjadi pilihan dalam penelitian ini tetap kompetitif dengan akurasi 

94,7% serta keunggulan dalam efisiensi komputasi. Temuan ini memperkuat 

pendekatan transfer learning yang memanfaatkan model pre-trained pada 

ImageNet, yang terbukti secara signifikan meningkatkan kinerja klasifikasi, 

khususnya ketika dataset yang tersedia terbatas atau tidak terlalu beragam. 

Selain aspek akurasi, survei tersebut juga menggarisbawahi pentingnya 
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optimasi untuk aplikasi real-time. MobileNetV2 disebutkan mampu mencapai 

kecepatan inferensi hingga 47 FPS pada perangkat keras NVIDIA Jetson Nano, 

dengan tetap mempertahankan akurasi di atas 90%. Hal ini menjadikannya salah 

satu arsitektur pilihan untuk sistem yang membutuhkan keseimbangan antara 

ketepatan dan kecepatan pemrosesan. Namun, sejumlah tantangan masih menjadi 

perhatian, seperti variasi kondisi pencahayaan dan cuaca, oklusi parsial, 

perbedaan intra-kelas yang lebar, serta kebutuhan akan dataset yang lebih 

representatif. Untuk mengatasi hal tersebut, sejumlah solusi seperti augmentasi 

data yang komprehensif, pelatihan multi-skala, dan pendekatan ensemble 

learning telah diusulkan dan diuji dalam berbagai studi terkini. 

Evaluasi kinerja sistem klasifikasi kendaraan, menurut survei ini, 

umumnya mengacu pada sejumlah metrik utama, termasuk akurasi di atas 90% 

untuk aplikasi praktis, latensi di bawah 100 ms untuk aplikasi real-time, serta 

konsistensi dan ketahanan terhadap variasi input. Di sisi lain, integrasi sistem 

klasifikasi dengan platform notifikasi dan pemantauan real-time semakin menjadi 

tren, di mana kombinasi antara kemampuan klasifikasi yang akurat dan sistem 

notifikasi yang responsif menjadi penentu keberhasilan implementasi di 

lingkungan industri, termasuk dalam konteks pengawasan kendaraan pada CV. 

Indah Jaya Sentosa. 

3.6.1 Konsep Object Recognition 

Object recognition merupakan cabang fundamental dalam computer 

vision yang bertujuan untuk mengidentifikasi dan mengklasifikasikan objek dalam 

gambar atau video ke dalam kategori tertentu. Konsep ini melibatkan serangkaian 

proses kompleks mulai dari deteksi objek, ekstraksi fitur, hingga klasifikasi 

berdasarkan karakteristik visual yang dimiliki. Menurut penelitian terbaru oleh (Li 

et al., 2021), object recognition telah mengalami evolusi signifikan dari metode 

tradisional berbasis hand-crafted features menuju pendekatan deep learning yang 

mampu belajar fitur secara otomatis dan hierarkis.  

Konsep dasar object recognition mencakup kemampuan sistem untuk 
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memahami keberadaan objek dalam sebuah scene, menentukan lokasinya 

melalui bounding box, serta mengidentifikasi kelas objek tersebut dengan tingkat 

akurasi yang tinggi. Dalam konteks klasifikasi kendaraan, object recognition 

memungkinkan sistem untuk membedakan berbagai jenis kendaraan berdasarkan 

fitur-fitur spesifik seperti bentuk, ukuran, proporsi, dan karakteristik struktural 

lainnya. Pendekatan modern menggunakan Convolutional Neural 

Networks (CNN) telah membuktikan efektivitasnya dalam menangani variasi besar 

dalam penampilan objek, perubahan kondisi pencahayaan, serta perbedaan sudut 

pandang yang menjadi tantangan utama dalam object recognition. 

3.6.2 Aplikasi Computer Vision (CV) dalam Sistem Transportasi 

Berdasarkan penelitian terbaru oleh (Mehta & Shah, 2025) dalam 

"Real-time Vehicle Detection and Classification Using Deep learning based 

Approach" yang diterbitkan di Journal of Information Systems Engineering 

and Management, aplikasi computer vision (CV) dalam sistem transportasi 

telah menunjukkan kemajuan signifikan dalam hal akurasi dan kecepatan 

pemrosesan. Penelitian ini mengimplementasikan pendekatan deep 

learning untuk deteksi dan klasifikasi kendaraan secara real-time, dengan 

hasil yang mengesankan dalam konteks sistem transportasi cerdas. 

Studi tersebut berhasil mengembangkan sistem yang mampu 

mendeteksi dan mengklasifikasikan kendaraan dengan akurasi mencapai 

96.8% pada kondisi lalu lintas real-time. Arsitektur deep learning yang 

digunakan terbukti efektif dalam mengidentifikasi berbagai jenis kendaraan, 

termasuk mobil, sepeda motor, bus, dan truk, bahkan dalam kondisi 

lingkungan yang menantang seperti cuaca buruk dan pencahayaan rendah. 

Keberhasilan ini menunjukkan potensi besar CV dalam meningkatkan 

efisiensi sistem transportasi perkotaan. 

Dalam konteks manajemen lalu lintas, penelitian ini menunjukkan 

bahwa sistem berbasis CV dapat memproses data visual dengan kecepatan 
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tinggi, mencapai 40-45 frame per second (FPS), sehingga memungkinkan 

respon yang cepat terhadap perubahan kondisi lalu lintas. Sistem yang 

dikembangkan juga mampu menganalisis kepadatan kendaraan dan pola 

pergerakan lalu lintas, memberikan data yang berharga untuk optimasi 

sistem kontrol lalu lintas adaptif. 

Aplikasi praktis dari penelitian ini termasuk sistem pemantauan lalu 

lintas otomatis, deteksi pelanggaran lalu lintas, dan analisis pola perjalanan 

kendaraan. Implementasi sistem semacam ini dapat mengurangi kemacetan 

hingga 25% melalui pengaturan sinyal lalu lintas yang lebih efisien. Selain 

itu, sistem ini juga berkontribusi dalam peningkatan keselamatan jalan 

dengan kemampuan mendeteksi potensi kecelakaan dan memberikan 

peringatan dini. 

Penelitian (Mehta & Shah, 2025) juga menyoroti integrasi sistem CV 

dengan teknologi Internet of Things (IoT) untuk menciptakan ekosistem 

transportasi yang terhubung. Kombinasi ini memungkinkan pertukaran data 

yang seamless antara kendaraan, infrastruktur jalan, dan pusat kendali lalu 

lintas, menciptakan sistem transportasi yang lebih responsif dan adaptif. 

3.7 Evaluasi Model Deep learning 

Evaluasi model deep learning merupakan tahap kritis dalam 

pengembangan sistem klasifikasi kendaraan untuk memastikan keandalan dan 

kesiapan model diterapkan dalam lingkungan produksi. Menurut penelitian 

(Neupane et al., 2022) dalam "Real-time Vehicle Classification and Tracking 

Using a Transfer Learning-Improved Deep learning Network", evaluasi 

komprehensif terhadap model deep learning harus mencakup analisis berbagai 

metrik performa untuk mendapatkan pemahaman menyeluruh tentang 

kemampuan model dalam tugas klasifikasi kendaraan. 

Penelitian tersebut mengimplementasikan pendekatan transfer 

learning pada jaringan deep learning dan melakukan evaluasi mendalam 

menggunakan metrik accuracy, precision, recall, dan F1-score. Hasil penelitian 

menunjukkan bahwa model yang diimprovisasi dengan transfer 
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learning mencapai akurasi klasifikasi yang signifikan lebih tinggi dibandingkan 

dengan model konvensional. (Neupane et al., 2022) menekankan bahwa akurasi 

saja tidak cukup untuk mengevaluasi kinerja model secara komprehensif, 

sehingga diperlukan analisis precision dan recall untuk setiap kelas kendaraan. 

Analisis confusion matrix dalam penelitian tersebut mengungkapkan pola 

kesalahan klasifikasi yang spesifik, di mana model mengalami kesulitan dalam 

membedakan kendaraan dengan karakteristik visual yang mirip. Temuan ini 

menyoroti pentingnya evaluasi mendetail untuk mengidentifikasi kelemahan 

model dan area yang memerlukan perbaikan. Selain itu, penelitian ini juga 

mengevaluasi kecepatan inferensi model untuk memastikan kesesuaian dengan 

aplikasi real-time, dengan hasil menunjukkan bahwa model yang diusulkan 

mampu memproses data secara efisien tanpa mengorbankan akurasi. 

3.7.1 Metrik Akurasi, Precision, Recall 

Evaluasi performa model klasifikasi dalam sistem pengenalan 

kendaraan memerlukan berbagai metrik evaluasi yang dihitung 

menggunakan rumus-rumus matematis tertentu. Berdasarkan penelitian 

(Neupane et al., 2022), berikut adalah rumus-rumus fundamental untuk 

menghitung metrik evaluasi model klasifikasi: 

1. Akurasi 

Akurasi mengukur persentase prediksi yang benar secara keseluruhan 

dari total prediksi: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 +  𝑇𝑁)

(𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁)
 

𝑇𝑃 = True Positive (prediksi positif yang benar) 

𝑇𝑁 = True Negative (prediksi negatif yang benar) 

𝐹𝑃 = False Positive (prediksi positif yang salah) 

𝐹𝑁 = False Negative (prediksi negatif yang salah) 

2. Precision 

Precision mengukur proporsi prediksi positif yang benar: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
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3. Recall 

Recall mengukur kemampuan model dalam menemukan semua 

instance positif: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

4. F1-Score 

F1-Score merupakan rata-rata harmonik dari precision dan recall: 

𝐹1  =  2 ×
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)
 

Dalam konteks klasifikasi multi-kelas seperti klasifikasi kendaraan (truk, 

mobil, motor, bus), metrik-metrik ini dapat dihitung untuk setiap kelas 

secara individual menggunakan pendekatan one-vs-rest, atau dihitung 

sebagai rata-rata makro/mikro across semua kelas. 

3.7.2 Confusion Matrix 

Confusion matrix merupakan alat evaluasi fundamental dalam 

klasifikasi yang memberikan gambaran komprehensif tentang performa 

model dengan memvisualisasikan hasil prediksi terhadap label sebenarnya. 

Menurut penelitian (Neupane et al., 2022), confusion matrix sangat penting 

untuk menganalisis pola kesalahan klasifikasi dalam sistem pengenalan 

kendaraan. 

1. Struktur Confusion Matrix 

Untuk masalah klasifikasi multi-kelas dengan empat jenis kendaraan 

(truk, mobil, motor, bus), confusion matrix berbentuk matriks 4×4 

yang menunjukkan: 

a. Diagonal utama: Jumlah prediksi benar untuk setiap kelas 

b. Off-diagonal: Jumlah kesalahan klasifikasi antar kelas 

2. Analisis Pola Kesalahan 

Confusion matrix mengungkapkan: 

a. Kelas yang mudah dikenali: Nilai diagonal tinggi 
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b. Kelas yang sering tertukar: Nilai off-diagonal tinggi antara kelas 

tertentu 

c. Bias klasifikasi: Kecenderungan model mengklasifikasikan ke 

kelas tertentu 

3. Aplikasi dalam Klasifikasi Kendaraan 

Pada sistem klasifikasi kendaraan, confusion matrix membantu 

mengidentifikasi: 

a. Kesulitan membedakan truk kecil dengan van 

b. Kebingungan antara minibus dengan SUV 

c. Kesalahan klasifikasi akibat sudut pandang kamera 

4. Manfaat untuk Perbaikan Model 

Berdasarkan analisis confusion matrix, pengembangan model dapat 

difokuskan pada: 

a. Penambahan data training untuk kelas yang sering salah 

b. Optimasi feature extraction untuk kelas yang mirip 

c. Adjustmen decision threshold untuk kelas tertentu 

3.8 Library Python 

Library Python merupakan kumpulan modul dan fungsi yang telah 

diprogram sebelumnya yang memungkinkan pengembang untuk melakukan 

tugas-tugas spesifik tanpa harus menulis kode dari awal. Dalam konteks 

pengembangan sistem berbasis kecerdasan buatan dan deep 

learning, library Python berperan sebagai fondasi yang menyediakan abstraksi 

tingkat tinggi untuk komputasi numerik, manipulasi data, dan implementasi 

algoritma kompleks. 

Konsep dasar library Python dalam pengembangan sistem mencakup 

modularitas dan reusable code, di mana fungsi-fungsi yang umum digunakan 

telah diimplementasikan dan dioptimasi sehingga pengembang dapat fokus pada 

logika aplikasi daripada implementasi detail teknis. Setiap library biasanya 

dikembangkan untuk domain spesifik dan menyediakan Application 

Programming Interface (API) yang terdokumentasi dengan baik untuk 

mempermudah integrasi. 



37 

 

Dalam ekosistem Python, mekanisme library management menggunakan 

package manager seperti pip dan conda memungkinkan instalasi, update, dan 

dependency resolution yang efisien. Virtual environment memastikan isolasi 

dependencies antara proyek yang berbeda, mencegah konflik versi dan 

memelihara konsistensi lingkungan pengembangan. 

Konsep penting lainnya adalah interoperability antara berbagai library, di 

mana output dari satu library dapat menjadi input untuk library lainnya, 

menciptakan alur kerja yang terintegrasi. Arsitektur berlapis dari library Python 

memungkinkan abstraksi dari level rendah (komputasi hardware) hingga level 

tinggi (implementasi algoritma machine learning), memberikan fleksibilitas 

dalam pengembangan aplikasi yang kompleks. 

Table 3.2 Library Python 

Library/Module Fungsi Utama 

os Operasi sistem file dan direktori 

random Generate angka dan data acak 

PIL.Image Manipulasi dan pemrosesan gambar 

matplotlib.pyplot Visualisasi data dan grafik 

tensorflow Framework deep learning utama 

tensorflow.keras API high-level untuk model neural network 

tensorflow.keras.applications Model pre-trained (MobileNetV2) 

tensorflow.keras.preprocessing.image Preprocessing dan augmentasi gambar 

tensorflow.keras.models Konstruksi dan penyimpanan model 

tensorflow.keras.layers Layer neural network 

tensorflow.keras.optimizers Optimizer training model 

tensorflow.keras.callbacks Callbacks selama proses training 

tensorflow.keras.regularizers Regularisasi model 

numpy Komputasi numerik dan array 

sklearn.metrics Evaluasi performa model 

seaborn Visualisasi data statistik 

tkinter Membuat antarmuka grafis 
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cv2 Pemrosesan gambar dan computer vision 

requests HTTP requests untuk API 

datetime Manipulasi tanggal dan waktu 
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BAB IV  

PEMBAHASAN 

4.1 Analisis Kebutuhan Sistem 

Analisis kebutuhan sistem dilakukan untuk mengidentifikasi dan 

mendefinisikan segala hal yang diperlukan agar sistem dapat dibangun dan 

berfungsi sesuai dengan tujuan. Analisis ini meliputi kebutuhan fungsional dan 

non-fungsional. 

4.1.1 Kebutuhan Fungsional 

Berdasarkan Rumusan Masalah 1: "Bagaimana merancang sistem 

berbasis deep learning menggunakan model MobileNetV2 untuk mengenali 

dan mengklasifikasikan jenis kendaraan (truk, mobil, motor, dan bus) secara 

otomatis dan akurat?" 

1. Akusisi Data Gambar 

a. Sistem harus mampu menerima input video real-time dari 

IP/Webcam 

b. Sistem harus dapat melakukan frame capture otomatis ketika 

terdeteksi adanya pergerakan kendaraan 

c. Resolusi gambar minimum 640 x 480 piksel untuk memastikan 

kualitas gambar yang cukup untuk klasifikasi 

2. Preprocessing Gambar 

a. Sistem harus melakukan resizing gambar ke dimensi 224x224 

piksel sesuai input requirement MobileNetV2 

b. Sistem harus melakukan normalisasi pixel values ke range [0,1] 

c. Sistem harus menerapkan augmentasi data selama training 

(rotation, flipping, brightness adjustment) 

3. Klasifikasi Kendaraan 

a. Sistem harus menggunakan arsitektur MobileNetV2 sebagai base 

model dengan weights pre-trained pada ImageNet 

b. Sistem harus mampu mengklasifikasikan kendaraan ke dalam 4 

kelas: truk, mobil, motor, bus 
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c. Sistem harus memiliki confidence threshold minimum 80% untuk 

validasi prediksi 

d. Sistem harus menyimpan model terbaik berdasarkan validation 

accuracy 

Berdasarkan Rumusan Masalah 2: "Bagaimana mengintegrasikan sistem 

klasifikasi kendaraan dengan kamera untuk pengambilan gambar dan 

memastikan pengiriman notifikasi ke petugas keamanan dan admin melalui 

aplikasi Telegram dalam waktu kurang dari 10 detik?" 

1. Integrasi Kamera Real-time 

a. Sistem harus terintegrasi dengan kamera melalui protokol RTSP 

(Real-time Streaming Protocol) atau USB 

b. Sistem harus mampu melakukan continuous monitoring tanpa 

crash 

c. Sistem harus memiliki mekanisme error handling ketika koneksi 

kamera terputus 

2. Sistem Notifikasi Telegram 

a. Sistem harus terintegrasi dengan Telegram Bot API menggunakan 

token yang valid 

b. Sistem harus mengirim notifikasi ke dua recipient berbeda: 

petugas keamanan (semua kendaraan) dan admin (khusus truk) 

c. Notifikasi harus berisi: jenis kendaraan, timestamp, confidence 

score, dan foto kendaraan 

d. Sistem harus memiliki retry mechanism ketika pengiriman 

notifikasi gagal 

3. Manajemen Data dan Logging 

a. Sistem harus mencatat setiap aktivitas deteksi ke dalam file log 

b. Sistem harus menyimpan gambar kendaraan yang terdeteksi untuk 

keperluan audit 

c. Sistem harus menyimpan data statistik harian jumlah kendaraan 

per jenis 
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4.1.2 Kebutuhan Non-Fungsional 

1. Kinerja Sistem 

a. Waktu end-to-end dari capture gambar hingga pengiriman 

notifikasi harus < 10 detik 

b. Akurasi klasifikasi harus > 90% pada testing dataset 

c. Sistem harus mampu berjalan 24/7 dengan uptime > 95% 

2. Keandalan 

a. Sistem harus memiliki mekanisme error handling untuk berbagai 

skenario failure 

b. Sistem harus mampu recover automatically dari koneksi error 

c. Data loss tidak boleh lebih dari 5% dari total deteksi 

3. Keterbatasan Sumber Daya 

a. Sistem harus dapat berjalan pada hardware minimal komputer 

dengan spesifikasi minimum atau equivalent 

b. Konsumsi memori tidak boleh melebihi 4GB selama operasional 

c. Penggunaan CPU tidak boleh melebihi 70% selama inferensi 

4. Maintainability 

a. Kode harus terdokumentasi dengan baik dan modular 

b. Konfigurasi sistem harus terpusat dalam file configuration 

c. Sistem harus mudah untuk di-deploy ulang 

4.2 Perancangan Sistem 

Perancangan sistem klasifikasi kendaraan ini mengintegrasikan tiga 

komponen utama yang bekerja secara berurutan untuk mencapai tujuan dari kerja 

praktik ini. Sistem dirancang dengan pendekatan modular yang memungkinkan 

setiap komponen dapat dikembangkan dan diuji secara independen. Komponen 

pertama adalah modul akuisisi data yang bertanggung jawab untuk menangkap 

stream video secara real-time dari kamera yang dipasang di gerbang masuk 

kawasan CV. Indah Jaya Sentosa. Modul ini akan secara kontinu memantau aliran 

video dan melakukan deteksi pergerakan untuk mengidentifikasi keberadaan 

kendaraan yang mendekat. Begitu kendaraan terdeteksi, sistem akan secara 
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otomatis menangkap frame gambar yang paling jelas dan melakukan 

preprocessing dasar seperti penskalaan ukuran gambar dan normalisasi nilai 

piksel agar sesuai dengan kebutuhan input model klasifikasi. 

Komponen inti dari sistem ini adalah modul klasifikasi kendaraan yang 

menggunakan arsitektur Deep learning MobileNetV2 yang telah dimodifikasi 

melalui teknik transfer learning. Model ini telah dilatih sebelumnya pada dataset 

ImageNet dan disesuaikan untuk mengklasifikasikan empat jenis kendaraan yang 

relevan dengan operasional perusahaan, yaitu truk, mobil, sepeda motor, dan bus. 

Gambar yang telah diproses dari modul akuisisi data akan diumpankan ke model 

ini untuk dilakukan inferensi, yang menghasilkan probabilitas untuk setiap kelas 

kendaraan. Hasil klasifikasi dengan confidence score tertinggi dan melebihi 

threshold yang ditentukan akan dianggap sebagai output final. 

Komponen terakhir adalah modul notifikasi dan logging yang bertugas 

mengelola komunikasi hasil klasifikasi kepada pihak-pihak terkait. Modul ini 

terintegrasi dengan Telegram Bot API untuk mengirimkan notifikasi real-time 

secara otomatis. Setiap kali kendaraan berhasil diklasifikasikan, sistem akan 

mengirimkan pesan yang berisi jenis kendaraan, timestamp, dan foto kendaraan 

yang terdeteksi ke petugas keamanan. Untuk kendaraan bertipe truk yang 

memiliki dampak langsung terhadap rantai distribusi, notifikasi tambahan akan 

dikirimkan khusus kepada admin gudang. Selain itu, semua aktivitas deteksi dan 

klasifikasi dicatat secara rapi dalam file log untuk keperluan dokumentasi, audit, 

dan analisis lebih lanjut. 

4.2.1 Diagram Blok Sistem 

Diagram blok sistem menggambarkan alur kerja keseluruhan dari 

sistem klasifikasi jenis kendaraan berbasis Deep learning, berdasarkan draft 

flowchart yang disediakan. Flowchart asli menunjukkan proses mulai dari 

validasi dataset hingga pengiriman notifikasi berdasarkan deteksi kendaraan 

sebagai truk atau bukan. Dalam konteks penelitian ini, diagram blok 

dimodifikasi untuk mengintegrasikan model MobileNetV2, pengambilan 

gambar real-time, dan notifikasi via Telegram untuk empat kelas kendaraan 

(truk, mobil, motor, bus). Berikut adalah penjelasan komponen utama dalam 
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diagram blok, yang disesuaikan dengan gambar flowchart: 

 
Figure 4.1 Diagram Blok Sistem 

1. Mulai (Start): Titik awal proses sistem. 

2. Validasi Dataset: Validasi dataset gambar kendaraan untuk 

memastikan kualitas dan keseimbangan kelas (truk, mobil, motor, 

bus). 

3. Buat Model CNN (Menggunakan MobileNetV2): Load model 

MobileNetV2 pre-trained dan fine-tune dengan lapisan tambahan 

untuk klasifikasi multi-kelas. 

4. Training Model: Pelatihan model dengan data augmentasi 

menggunakan ImageDataGenerator. 

5. Simpan Model: Simpan model terlatih dalam format .h5 untuk 

deployment. 

6. Input Source?: Pilih sumber input: 

a. Pilih Gambar dari File: Ambil gambar dari file local 

b. Capture Gambar dari Kamera: Tangkap gambar real-time via 

webcam atau IP camera menggunakan OpenCV. 

7. Preprocessing Gambar: Resize ke 224x224, normalisasi, dan 
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preprocess_input MobileNetV2. 

8. Predict Class Kendaraan: Inferensi menggunakan model untuk 

memprediksi kelas (truk, mobil, motor, bus). 

9. Decode Hasil Prediksi: Interpretasikan output prediksi menjadi label 

kelas dengan confidence score. 

10. Keputusan Berdasarkan Kelas (Modifikasi dari flowchart asli yang 

hanya biner truk/bukan): 

a. Jika truk: Kirim notifikasi ke Admin & Security via Telegram 

(prioritas distribusi). 

b. Jika bukan truk (mobil, motor, bus): Kirim ke Security saja. 

11. Akhir (End): Proses selesai setelah notifikasi dikirim. 

4.2.2 Arsitektur Model Deep learning - MobileNetV2 Custom Layers 

Arsitektur model deep learning yang diimplementasikan dalam 

sistem ini menggunakan pendekatan transfer 

learning dengan MobileNetV2 sebagai base model. Pemilihan MobileNetV2 

didasarkan pada efisiensi komputasinya yang tinggi dan ukuran model yang 

ringan, sehingga cocok untuk aplikasi klasifikasi real-time. 

1. Base Model: MobileNetV2 Pre-trained 

A. Model menggunakan arsitektur MobileNetV2 yang telah dilatih 

sebelumnya pada dataset ImageNet. 

B. Konfigurasi base model: 

a. weights='imagenet': Menggunakan bobot yang telah dilatih 

pada ImageNet 

b. include_top=False: Menghapus lapisan klasifikasi asli 

MobileNetV2 

c. input_shape=(224, 224, 3): Ukuran input gambar disesuaikan 

dengan kebutuhan model 

C. Pada tahap awal pelatihan, seluruh lapisan konvolusi pada base 

model dibekukan (base_model.trainable = False) untuk 

mempertahankan fitur-fitur umum yang telah dipelajari. 

2. Custom Layers Architecture 
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Setelah base model, ditambahkan lapisan-lapisan kustom berikut 

untuk membangun model klasifikasi kendaraan: 

Penjelasan Lapisan Kustom: 

A. Global Average Pooling 2D 

a. Mengurangi dimensi spasial dari feature maps yang dihasilkan 

MobileNetV2 

b. Menghasilkan vektor fitur 1D yang siap untuk lapisan 

klasifikasi 

c. Lebih efisien secara komputasi dibandingkan Fully 

Connected layer 

B. Dropout Layer (Rate = 0.4) 

a. Teknik regularisasi untuk mencegah overfitting 

b. Mengabaikan secara acak 40% neuron selama pelatihan 

C. Dense Layer (128 unit) dengan Aktivasi ReLU 

a. Lapisan terhubung penuh dengan 128 neuron 

b. Fungsi aktivasi ReLU untuk non-linearitas 

c. Kernel regularizer L2 (λ = 0.01) untuk menstabilkan pelatihan 

D. Dropout Layer (Rate = 0.3) 

a. Regularisasi tambahan pada lapisan dense 

E. Output Layer (Dense dengan Softmax Activation) 

a. Jumlah neuron sesuai dengan jumlah kelas kendaraan (4 kelas) 

b. Fungsi aktivasi softmax untuk menghasilkan probabilitas 

setiap kelas 

3. Kompilasi Model 

Model dikompilasi dengan konfigurasi berikut: 

model = Sequential([ 

        base_model, 

        GlobalAveragePooling2D(), 

        Dropout(0.4), 

        Dense(128, activation='relu', kernel_regularizer=l2(0.01)), 

        Dropout(0.3), 

        Dense(train_generator.num_classes, activation='softmax') 

    ]) 
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A. Optimizer: Adam dengan learning rate = 1e-4 

B. Loss Function: Categorical Crossentropy 

C. Metrics: Accuracy 

4. Strategi Pelatihan 

A. Data Augmentation: Menggunakan ImageDataGenerator dengan 

variasi: 

a. Rotasi 30 derajat 

b. Pergeseran horizontal dan vertikal (20%) 

c. Shearing dan zooming (20-30%) 

d. Horizontal flipping 

B. Callbacks: 

a. EarlyStopping: Menghentikan pelatihan jika tidak ada 

improvement pada validation loss selama 5 epoch 

b. ModelCheckpoint: Menyimpan model terbaik 

berdasarkan validation accuracy 

5. Ringkasan Arsitektur Model 

 

Figure 4.2 Arsitektur Model Custom 

Dengan arsitektur ini, model mampu memanfaatkan fitur-fitur umum yang 

telah dipelajari MobileNetV2 dari ImageNet, sementara lapisan kustom 

beradaptasi secara spesifik untuk tugas klasifikasi kendaraan pada CV. 

Indah Jaya Sentosa. 

4.3 Implementasi Sistem 

Implementasi sistem klasifikasi kendaraan berbasis deep learning ini 
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dilakukan melalui beberapa tahap, mulai dari persiapan lingkungan 

pengembangan hingga integrasi seluruh komponen sistem untuk membangun 

suatu solusi yang berfungsi secara end-to-end. 

4.3.1 Environment Development 

Pengembangan sistem dilakukan menggunakan 

lingkungan software dan hardware yang telah ditentukan untuk 

memastikan konsistensi dan kompatibilitas antar komponen. 

1. Spesifikasi Perangkat Lunak 

A. Sistem Operasi: Windows 10/11 atau Ubuntu 20.04 LTS 

B. Bahasa Pemrograman: Python 3.8 

C. Framework Deep learning: TensorFlow 2.10 dengan Keras 

D. Library Pendukung: 

a. OpenCV (CV2) untuk akusisi gambar dan preprocessing 

b. NumPy untuk komputasi numerik 

c. Matplotlib & Seaborn untuk visualisasi 

d. Telegram Bot API (python-Telegram-bot) untuk notifikasi 

e. Pillow (PIL) untuk manipulasi gambar 

2. Spesifikasi Perangkat Keras 

A. Prosesor: Intel Core I5 atau setara 

B. RAM: Minimal 8 GB 

C. Penyimpanan: SSD 256 GB 

D. Koneksi Jaringan: Internet untuk notifikasi Telegram  

3. Konfigurasi Environment 

Lingkungan development dikonfigurasi menggunakan virtual 

environment untuk mengisolasi dependensi. Semua library yang 

diperlukan dicantumkan dalam file requirements.txt untuk 

memudahkan instalasi dan reproduksi. 

4.3.2 Alur Kerja Sistem 

Alur kerja sistem dirancang untuk memproses input gambar dari kamera, 

mengklasifikasikan jenis kendaraan, dan mengirimkan notifikasi 
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secara real-time. Berikut adalah penjelasan langkah demi langkah 

berdasarkan flowchart implementasi: 

 

Figure 4.3 Diagram Alur Kerja Sistem 

1. Input Video Real-time: 

a. Sistem membaca frame secara kontinu dari kamera yang terpasang 

di gerbang masuk. 

b. Setiap frame diperiksa untuk mendeteksi keberadaan kendaraan. 

2. Deteksi dan Capture Kendaraan: 

a. Jika terdeteksi kendaraan, sistem melakukan capture gambar 

kendaraan. 

b. Jika tidak terdeteksi, sistem kembali membaca frame berikutnya. 

3. Preprocessing Gambar: 

a. Gambar yang terdeteksi di-resize menjadi 224x224 piksel. 

b. Dilakukan normalisasi nilai piksel untuk mempersiapkan input 

model. 

4. Klasifikasi dengan MobileNetV2: 

a. Gambar diproses oleh model MobileNetV2 yang telah dilatih. 

b. Model memprediksi kelas kendaraan (truk, mobil, motor, bus) dan 

menghasilkan confidence score. 

5. Validasi Hasil Klasifikasi: 

a. Jika confidence score ≥ 80%, sistem melanjutkan ke decode hasil. 

b. Jika confidence score < 80%, sistem mengabaikan hasil dan 
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kembali memantau. 

6. Logging Data: 

a. Gambar kendaraan disimpan untuk dokumentasi. 

b. Data dicatat meliputi: jenis kendaraan, waktu deteksi, 

dan confidence score. 

7. Keputusan Notifikasi: 

a. Jika kendaraan terdeteksi sebagai truk: notifikasi dikirim 

ke Admin & Security. 

b. Jika kendaraan bukan truk (mobil, motor, bus): notifikasi dikirim 

ke Security saja. 

8. Pengiriman Notifikasi Telegram: 

a. Notifikasi dikirim via Telegram Bot API. 

b. Isi notifikasi: jenis kendaraan, timestamp, confidence score, dan 

foto kendaraan. 

9. Looping Kontinu: 

a. Sistem kembali membaca frame kamera berikutnya untuk 

mendeteksi kendaraan selanjutnya. 

Dengan alur ini, sistem mampu beroperasi secara otomatis, akurat, dan 

responsif dalam mendukung operasional CV. Indah Jaya Sentosa dengan 

waktu respons end-to-end di bawah 10 detik. 

4.3.3 Implementasi Kode Program 

Sistem diimplementasikan menggunakan empat script Python yang saling 

terintegrasi. Berikut adalah implementasi lengkap kode program: 

1. Script Training (train.py) 

Script ini bertanggung jawab untuk melatih model deep 

learning menggunakan arsitektur MobileNetV2 dengan teknik transfer 

learning. 

Fungsi Utama: 

a. Load dataset kendaraan dari path folder 

b. Implementasi data augmentation untuk meningkatkan variasi data 
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c. Transfer Learning dengan MobileNetV2 sebagai base model 

d. Training model dengan early stopping dan model checkpointing 

e. Evaluasi performa dan penyimpanan model terbaik 

Implementasi code kunci: 

# Eksplorasi struktur dataset kendaraan 

def explore_dataset_structure(base_path): 

    for item in os.listdir(base_path): 

        item_path = os.path.join(base_path, item) 

        if os.path.isdir(item_path): 

            print(f"{item}/") 

            for subitem in os.listdir(item_path): 

                subitem_path = os.path.join(item_path, subitem) 

                if os.path.isdir(subitem_path): 

                    images = [f for f in os.listdir(subitem_path)  

                             if f.lower().endswith(('.jpg', '.jpeg', '.png'))] 

                    print(f"   └── {subitem}/ ({len(images)} images)") 

 

# Data augmentation untuk meningkatkan variasi data training 

train_datagen = ImageDataGenerator( 

    rotation_range=30,           # Rotasi gambar hingga 30 derajat 

    width_shift_range=0.2,       # Geser horizontal 20% 

    height_shift_range=0.2,      # Geser vertikal 20% 

    shear_range=0.2,             # Shear transformation 20% 

    zoom_range=0.3,              # Zoom hingga 30% 

    horizontal_flip=True,        # Flip horizontal 

    fill_mode='nearest'          # Metode pengisian piksel 

) 

 

# Pembuatan model MobileNetV2 dengan lapisan kustom 

base_model = MobileNetV2(weights='imagenet', 

include_top=False, input_shape=(224, 224, 3)) 
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base_model.trainable = False  # Freeze base model untuk transfer 

learning 

 

model = Sequential([ 

    base_model,                           # Base model MobileNetV2 

    GlobalAveragePooling2D(),             # Global average pooling 

    Dropout(0.4),                         # Dropout 40% untuk regularisasi 

    Dense(128, activation='relu', kernel_regularizer=l2(0.01)),  # 

Dense layer dengan L2 regularization 

    Dropout(0.3),                         # Dropout 30% tambahan 

    Dense(train_generator.num_classes, activation='softmax')  # 

Output layer untuk klasifikasi 

]) 

 

# Pelatihan model dengan early stopping dan model checkpointing 

early_stopping = EarlyStopping( 

    monitor='val_loss',      # Monitor validation loss 

    patience=5,              # Berhenti jika tidak membaik dalam 5 epoch 

    restore_best_weights=True  # Kembali ke weights terbaik 

) 

 

checkpoint = ModelCheckpoint( 

    "best_vehicle_classifier.keras",  # Nama file model terbaik 

    monitor='val_accuracy',           # Monitor validation accuracy 

    save_best_only=True,              # Hanya simpan yang terbaik 

    mode='max'                        # Mode maksimasi accuracy 

) 

 

# Training model dengan callbacks 

history = model.fit( 

    train_generator,           # Data training 
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    epochs=50,                 # Maksimal 50 epoch 

    validation_data=val_generator,  # Data validasi 

    callbacks=[early_stopping, checkpoint]  # Callbacks untuk 

optimasi 

) 

 

# Evaluasi performa model dan visualisasi hasil training 

plt.figure(figsize=(12, 5)) 

 

# Plot accuracy 

plt.subplot(1, 2, 1) 

plt.plot(history.history['accuracy'], label='Training Accuracy') 

plt.plot(history.history['val_accuracy'], label='Validation 

Accuracy') 

plt.title('Model Accuracy') 

plt.xlabel('Epoch') 

plt.ylabel('Accuracy') 

plt.legend() 

 

# Plot loss 

plt.subplot(1, 2, 2) 

plt.plot(history.history['loss'], label='Training Loss') 

plt.plot(history.history['val_loss'], label='Validation Loss') 

plt.title('Model Loss') 

plt.xlabel('Epoch') 

plt.ylabel('Loss') 

plt.legend() 

 

plt.tight_layout() 

plt.show() 
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2. Script Testing (test.py) 

Script ini digunakan untuk evaluasi komprehensif model yang telah 

dilatih menggunakan dataset testing. 

Fungsi Utama: 

a. Load model terlatih dan dataset testing 

b. Evaluasi kuantitatif menggunakan metrik akurasi dan loss 

c. Analisis detail dengan classification report dan confusion matrix 

d. Antarmuka grafis untuk klasifikasi gambar tunggal 

e. Visualisasi hasil prediksi dengan grafik probabilitas 

Implementasi code kunci: 

# Load model terlatih dan dataset testing 

model = load_model("vehicle_classifier.keras")  # Load model yang 

sudah dilatih 

 

test_generator = test_datagen.flow_from_directory( 

    os.path.join(dataset_path, 'test'),  # Path dataset test 

    target_size=(224, 224),              # Resize gambar ke 224x224 

    batch_size=32,                       # Batch size untuk testing 

    class_mode='categorical',            # Mode klasifikasi kategorikal 

    shuffle=False                        # Tidak acak untuk evaluasi konsisten 

) 

 

# Evaluasi kuantitatif menggunakan metrik akurasi dan loss 

test_loss, test_acc = model.evaluate(test_generator, verbose=1) 

print(f"Test Accuracy: {test_acc*100:.2f}%")  # Akurasi testing 

print(f"Test Loss: {test_loss:.4f}")          # Loss testing 

 

# Analisis detail dengan classification report dan confusion matrix 

predictions = model.predict(test_generator)                    # Prediksi 

pada test set 

predicted_classes = np.argmax(predictions, axis=1)            # Ambil 
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kelas prediksi 

true_classes = test_generator.classes                         # Kelas sebenarnya 

 

# Classification report untuk precision, recall, f1-score 

print(classification_report(true_classes, predicted_classes, 

target_names=class_labels)) 

 

# Confusion matrix untuk analisis kesalahan klasifikasi 

cm = confusion_matrix(true_classes, predicted_classes) 

sns.heatmap(cm, annot=True, fmt='d',  

            xticklabels=class_labels,  

            yticklabels=class_labels) 

plt.title('Confusion Matrix - Klasifikasi Kendaraan') 

plt.xlabel('Predicted Label') 

plt.ylabel('True Label') 

plt.show() 

 

# Antarmuka grafis untuk klasifikasi gambar tunggal 

def pilih_gambar_dari_explorer(): 

    root = tk.Tk() 

    root.withdraw()  # Sembunyikan window utama 

    return filedialog.askopenfilename( 

        title="Pilih Gambar Kendaraan untuk Diklasifikasi", 

        filetypes=[("Image files", "*.jpg *.jpeg *.png")]  # Filter file 

gambar 

    ) 

 

# Visualisasi hasil prediksi dengan grafik probabilitas 

def display_prediction(image_path, results): 

    plt.figure(figsize=(14, 7)) 
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    # Tampilkan gambar input 

    plt.subplot(1, 2, 1) 

    plt.imshow(Image.open(image_path)) 

    plt.title(f'Gambar Input: {os.path.basename(image_path)}') 

    plt.axis('off') 

     

    # Tampilkan grafik probabilitas 

    plt.subplot(1, 2, 2) 

    classes = list(results['all_predictions'].keys()) 

    probabilities = list(results['all_predictions'].values()) 

     

    # Warna berbeda untuk kelas terpilih 

    colors = ['lightblue' if cls != results['predicted_class'] else 

'steelblue'  

              for cls in classes] 

     

    bars = plt.barh(classes, probabilities, color=colors) 

    plt.xlabel('Probabilitas') 

    plt.title('Hasil Prediksi Model') 

    plt.xlim(0, 1)  # Batas probabilitas 0-1 

     

    # Tambahkan nilai probabilitas pada bar 

    for bar, prob in zip(bars, probabilities): 

        plt.text(prob + 0.01, bar.get_y() + bar.get_height()/2,  

                f'{prob:.4f}', va='center', fontweight='bold') 

     

    plt.tight_layout() 

    plt.show() 

 

3. Script Telegram Bot (testbot.py) 

Script ini mengintegrasikan sistem klasifikasi dengan notifikasi real-
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time melalui Telegram API. 

Fungsi Utama: 

a. Klasifikasi gambar dari file explorer 

b. Pengiriman notifikasi otomatis berdasarkan jenis kendaraan 

c. Notifikasi ke security untuk semua kendaraan 

d. Notifikasi tambahan ke admin khusus untuk kendaraan truk 

e. Format pesan terstruktur dengan detail probabilitas 

Implementasi code kunci: 

# Klasifikasi gambar dari file explorer 

image_path = pilih_gambar_dari_explorer()  # Pilih gambar dari 

dialog file 

results = predict_single_image(image_path, model)  # Klasifikasi 

gambar 

 

# Format pesan terstruktur dengan detail probabilitas 

message = f"🚗 HASIL KLASIFIKASI KENDARAAN\n\n" 

message += f"Waktu: {datetime.now().strftime('%Y-%m-%d 

%H:%M:%S')}\n" 

message += f"Jenis: {results['predicted_class'].upper()}\n" 

message += f"Keyakinan: {results['confidence']*100:.2f}%\n\n" 

message += "Detail Probabilitas:\n" 

 

# Tambahkan detail probabilitas semua kelas 

for cls, prob in sorted(results['all_predictions'].items(), key=lambda 

x: x[1], reverse=True): 

    star = "⭐ " if cls == results['predicted_class'] else "  "  # Tanda 

untuk kelas terpilih 

    message += f"{star}{cls}: {prob*100:.2f}%\n" 

 

# Pengiriman notifikasi otomatis berdasarkan jenis kendaraan 
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def send_notification_based_on_vehicle(predicted_class, message, 

image_path): 

    # Notifikasi ke security untuk semua kendaraan 

    send_to_Telegram(SECURITY_BOT_TOKEN, 

SECURITY_CHAT_ID, message, image_path) 

    print("Notifikasi dikirim ke Security") 

     

    # Notifikasi tambahan ke admin khusus untuk kendaraan truk 

    if predicted_class.lower() == 'truk': 

        send_to_Telegram(ADMIN_BOT_TOKEN, 

ADMIN_CHAT_ID, message, image_path) 

        print("Notifikasi tambahan dikirim ke Admin (TRUK 

terdeteksi)") 

    else: 

        print(f"Kendaraan {predicted_class.upper()}, hanya notifikasi 

ke Security") 

 

# Eksekusi notifikasi berdasarkan hasil klasifikasi 

send_notification_based_on_vehicle(results['predicted_class'], 

message, image_path) 

 

4. Script Camera (testcamera.py) 

Script ini mengimplementasikan sistem real-time dengan input 

langsung dari webcam untuk klasifikasi instan. 

Fungsi Utama: 

a. Capture gambar langsung dari webcam 

b. Preprocessing frame video real-time 

c. Klasifikasi otomatis dengan confidence threshold 

d. Pengiriman notifikasi Telegram dengan format Markdown 

e. Penyimpanan gambar sementara untuk dokumentasi 

Implrmentasi code kunci: 
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# Capture gambar langsung dari webcam 

def capture_image_from_webcam(): 

    cap = cv2.VideoCapture(0)  # Buka kamera default 

    if not cap.isOpened(): 

        print("ERROR: Tidak dapat mengakses webcam!") 

        return None 

     

    print("Kamera aktif. Tekan 's' untuk mengambil gambar, 'q' untuk 

keluar.") 

     

    while True: 

        ret, frame = cap.read() 

        if not ret: 

            print("Gagal menangkap frame dari kamera!") 

            break 

         

        # Tampilkan preview webcam 

        cv2.imshow('Webcam - Tekan "s" untuk simpan, "q" untuk 

keluar', frame) 

         

        key = cv2.waitKey(1) & 0xFF 

        if key == ord('s'):  # Simpan gambar ketika tekan 's' 

            # Buat directory temporary jika belum ada 

            temp_dir = "temp_images" 

            if not os.path.exists(temp_dir): 

                os.makedirs(temp_dir) 

             

            # Simpan gambar dengan timestamp 

            timestamp = 

datetime.now().strftime("%Y%m%d_%H%M%S") 

            image_path = 
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f"{temp_dir}/webcam_capture_{timestamp}.jpg" 

            cv2.imwrite(image_path, frame) 

            print(f"Gambar disimpan: {image_path}") 

             

            cap.release() 

            cv2.destroyAllWindows() 

            return image_path 

             

        elif key == ord('q'):  # Keluar ketika tekan 'q' 

            print("Keluar dari mode kamera") 

            break 

     

    cap.release() 

    cv2.destroyAllWindows() 

    return None 

 

# Preprocessing frame video real-time 

def preprocess_frame(frame, img_size=224): 

    frame_resized = cv2.resize(frame, (img_size, img_size))  # 

Resize ke input model 

    frame_normalized = frame_resized / 255.0                 # Normalisasi 

[0,1] 

    frame_expanded = np.expand_dims(frame_normalized, axis=0)  

# Tambahkan batch dimension 

    return frame_expanded 

 

# Klasifikasi otomatis dengan confidence threshold 

def classify_with_confidence_threshold(image_path, model, 

confidence_threshold=0.8): 

    results = predict_single_image(image_path, model)  # Prediksi 

gambar 
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    if results['confidence'] >= confidence_threshold: 

        print(f"Klasifikasi berhasil (confidence: 

{results['confidence']:.4f})") 

        return results 

    else: 

        print(f"Confidence terlalu rendah: {results['confidence']:.4f} < 

{confidence_threshold}") 

        return None  # Abaikan jika confidence di bawah threshold 

 

# Pengiriman notifikasi Telegram dengan format Markdown 

def send_Telegram_markdown_notification(bot_token, chat_id, 

message, image_path): 

    # Escape karakter khusus MarkdownV2 

    escaped_message = escape_markdown_v2(message) 

     

    params = { 

        "chat_id": chat_id, 

        "text": escaped_message, 

        "parse_mode": "MarkdownV2"  # Format Markdown untuk 

styling 

    } 

     

    # Kirim pesan teks 

    response = 

requests.post(f"https://api.Telegram.org/bot{bot_token}/sendMess

age",  

                            params=params) 

     

    # Kirim gambar jika tersedia 

    if image_path and os.path.exists(image_path): 
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        with open(image_path, 'rb') as img_file: 

            

requests.post(f"https://api.Telegram.org/bot{bot_token}/sendPhoto

", 

                         params={"chat_id": chat_id}, 

                         files={'photo': img_file}) 

 

# Penyimpanan gambar sementara untuk dokumentasi 

temp_dir = "temp_images" 

if not os.path.exists(temp_dir): 

    os.makedirs(temp_dir) 

    print(f"Directory {temp_dir} created for temporary image 

storage") 

else: 

    print(f"Directory {temp_dir} already exists for image storage") 

4.4 Pengujian Sistem 

Pengujian sistem dilakukan untuk memvalidasi kinerja dan keandalan 

sistem klasifikasi kendaraan secara keseluruhan. Pengujian ini dirancang untuk 

mengukur dua aspek utama: akurasi model klasifikasi dan kinerja sistem 

secara end-to-end dalam lingkungan yang mendekati kondisi real-time. 

Pendekatan pengujian mengikuti metodologi yang sistematis, dimana 

setiap komponen sistem diuji secara terpisah terlebih dahulu, kemudian 

diintegrasikan dan diuji sebagai satu kesatuan. Pengujian komponen meliputi 

validasi model deep learning, sedangkan pengujian integrasi mencakup 

keseluruhan alur sistem mulai dari akuisisi gambar, klasifikasi kendaraan, hingga 

pengiriman notifikasi. 

Tujuan pengujian adalah untuk memverifikasi bahwa sistem memenuhi 

semua kebutuhan fungsional dan non-fungsional yang telah ditetapkan, termasuk 

akurasi klasifikasi di atas 90% dan waktu respons end-to-end di bawah 10 detik. 

Pengujian dilakukan dalam lingkungan yang terkontrol namun merepresentasikan 
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kondisi operasional aktual di CV. Indah Jaya Sentosa. 

4.4.1 Metodologi Testing 

Metodologi testing yang diterapkan dalam penelitian ini 

menggunakan pendekatan black-box testing dan performance testing untuk 

mengevaluasi sistem secara komprehensif. Pengujian dilakukan secara 

bertahap dengan fokus pada aspek fungsionalitas dan kinerja sistem 

secara end-to-end. 

1. Pendekatan Pengujian: 

a. Unit Testing: Menguji masing-masing modul sistem secara 

terisolasi, termasuk model klasifikasi, preprocessing gambar, dan 

modul notifikasi. 

b. Integration Testing: Memverifikasi integrasi antar modul sistem 

untuk memastikan alur kerja yang seamless dari akuisisi gambar 

hingga pengiriman notifikasi. 

c. Performance Testing: Mengukur waktu respons sistem dan akurasi 

model dalam kondisi beban kerja yang variatif. 

2. Matrik Evaluasi: 

a. Akurasi Model: Diukur menggunakan accuracy, precision, recall, 

dan F1-score pada dataset testing. 

b. Kinerja Sistem: Diukur melalui waktu respons end-to-end dari 

deteksi kendaraan hingga notifikasi terkirim. 

c. Keandalan: Dievaluasi berdasarkan konsistensi performa dalam 

multiple running sessions. 

3. Protokol Pengujian: 

a. Setiap pengujian dilakukan minimal 5 kali running untuk 

memastikan konsistensi hasil. 

b. Variasi kondisi testing mencakup perbedaan lighting, sudut 

pengambilan gambar, dan jenis kendaraan. 

c. Pengukuran waktu menggunakan high-resolution timer untuk 

akurasi milidetik. 
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4. Environment Testing: 

a. Lingkungan pengujian menggunakan hardware dan software yang 

sama dengan environment production. 

b. Dataset testing yang representative dengan distribusi kelas yang 

seimbang. 

c. Kondisi jaringan internet yang stabil untuk testing notifikasi real-

time. 

Metodologi ini dirancang untuk memberikan evaluasi yang komprehensif 

dan objektif terhadap kinerja sistem secara keseluruhan. 

Proses distribusi dataset mengikuti alur terstruktur seperti yang 

ditunjukkan pada Gambar 4.4 untuk memastikan validitas dan reliabilitas 

hasil pengujian model. Dataset utama yang berisi gambar kendaraan 

dikelompokkan ke dalam empat kelas: bus, mobil, motor, dan truk. 

 

 

Figure 4.4 Diagram Distribusi Dataset 

Alur distribusi dataset dimulai dari pengumpulan data mentah yang 

kemudian melalui proses pembagian secara proporsional menjadi tiga subset 

utama: 

1. Dataset Training (450 gambar) 
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a. Digunakan secara eksklusif untuk proses pelatihan model 

b. Menerapkan teknik augmentasi data untuk meningkatkan variasi 

dataset 

c. Berperan dalam penyesuaian bobot model melalui algoritma 

backpropagation 

2. Dataset Validation (126 gambar) 

a. Digunakan untuk memantau proses pelatihan dan mencegah 

overfitting 

b. Berfungsi sebagai acuan dalam penerapan early stopping 

c. Membantu dalam tuning hyperparameter model 

3. Dataset Testing (126 gambar) 

a. Digunakan hanya untuk evaluasi akhir model yang telah dilatih 

b. Tidak pernah diperlihatkan kepada model selama proses pelatihan 

c. Merepresentasikan data baru untuk mengukur kemampuan 

generalisasi model 

Setiap subset mempertahankan distribusi kelas yang seimbang, memastikan 

bahwa tidak ada bias terhadap kelas tertentu dalam proses pengujian. 

Pembagian ini mengikuti best practices dalam pengembangan sistem 

machine learning untuk memastikan evaluasi yang objektif dan dapat 

dipercaya. 

4.4.2 Skenario Pengujian 

Skenario pengujian dirancang untuk mengevaluasi sistem dalam 

kondisi yang mendekati penerapan nyata di CV. Indah Jaya Sentosa. 

Pengujian dilakukan berdasarkan dua aspek kritis: akurasi 

klasifikasi dan kinerja waktu (latency). 

1. Pengujian Akurasi Klasifikasi 

A. Pengujian Akurasi Model pada Data Baru (Testing Set) 

a. Tujuan: Mengukur kemampuan model dalam 

mengklasifikasikan empat jenis kendaraan (truk, mobil, motor, 

bus) pada data yang belum pernah dilihat sebelumnya. 
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b. Skenario: Model yang telah dilatih dievaluasi menggunakan 

dataset testing yang terisolasi sebanyak 126 gambar. 

c. Kondisi: Pengujian dilakukan secara offline menggunakan 

gambar yang telah dikumpulkan sebelumnya, 

merepresentasikan variasi kendaraan yang masuk ke area 

perusahaan. 

B. Pengujian Konsistensi dan Keandalan Model 

a. Tujuan: Memvalidasi stabilitas performa model dan 

memastikan bahwa hasil yang baik bukanlah suatu kebetulan. 

b. Skenario: Proses pelatihan dan evaluasi model diulang 

sebanyak 5 kali dengan inisialisasi acak yang berbeda. 

c. Kondisi: Setiap pelatihan baru menggunakan pembagian data 

dan parameter awal yang berbeda untuk menguji konsistensi 

akhir. 

2. Pengujian Latency dan Kinerja Real-time 

A. Pengujian Latency End-to-End 

a. Tujuan: Mengukur total waktu respons sistem, mulai dari 

kendaraan terdeteksi hingga notifikasi diterima oleh pengguna. 

b. Skenario: Sistem dijalankan secara real-time. Waktu diukur 

dari saat gambar di-capture oleh kamera hingga notifikasi 

muncul di aplikasi Telegram petugas. 

c. Kondisi: Mensimulasikan alur operasional nyata di gerbang 

masuk perusahaan. Pengujian dilakukan berulang kali untuk 

setiap kelas kendaraan. 

B. Pengujian Latency Komponen Individual 

a. Tujuan: Mengidentifikasi komponen mana dalam sistem yang 

paling banyak menghabiskan waktu. 

b. Skenario: Waktu eksekusi untuk setiap tahap inti diukur secara 

terpisah: 

• Preprocessing gambar. 

• Inference atau klasifikasi oleh model deep learning. 
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• Pengiriman pesan melalui Telegram Bot API. 

c. Kondisi: Pengujian dilakukan dalam lingkungan yang 

terkontrol untuk mengisolasi performa setiap komponen. 

C. Pengujian Keandalan Notifikasi 

a. Tujuan: Memastikan logika bisnis notifikasi berjalan sesuai 

spesifikasi. 

b. Skenario: 

• Sistem diuji dengan semua jenis kendaraan untuk 

memverifikasi bahwa notifikasi selalu dikirim ke petugas 

keamanan. 

• Sistem diuji khusus dengan kendaraan bertipe truk untuk 

memverifikasi bahwa notifikasi tambahan juga dikirim ke 

admin. 

c. Kondisi: Menguji integrasi dan logika sistem, bukan hanya 

keakuratan model. 

3. Kondisi Lingkungan Pengujian 

A. Lingkungan Terkontrol 

a. Pengujian dilakukan pada perangkat keras dengan spesifikasi 

standar. 

b. Koneksi internet yang stabil untuk memastikan pengukuran 

latency yang konsisten. 

B. Variasi Input 

a. Gambar kendaraan dengan berbagai sudut dan jarak. 

b. Kondisi pencahayaan yang berbeda (siang hari). 

Dengan skenario yang komprehensif ini, diharapkan performa dan 

keandalan sistem dapat terukur secara objektif sebelum diterapkan di 

lingkungan produksi. 

4.4.3 Hasil Pengujian 

1. Pengujian Akurasi Model 

Pengujian sistem dilakukan secara komprehensif untuk memvalidasi 
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kinerja model klasifikasi kendaraan yang telah dibangun. Proses 

pengujian akurasi model dilakukan melalui lima kali pelatihan 

independen dengan inisialisasi bobot acak yang berbeda untuk 

memastikan keandalan dan konsistensi hasil. Dataset testing yang 

digunakan terdiri dari 126 gambar dengan distribusi merata across 

keempat kelas kendaraan (bus, truk, motor, mobil). 

Table 4.1 Training, Akurasi dan Loss 

Training Accuracy Test Loss Macro F1-Score 

Training 1 96.83% 1.6318 96.30% 

Training 2 97.62% 1.7205 97.20% 

Training 3 97.62% 1.6844 97.20% 

Training 4 98.41% 1.7188 98.12% 

Training 5 97.62% 1.6612 97.20% 

Rata-rata 97.62% 1.6833 97.40% 

Std Dev 0.53% 0.0335 0.60% 

Rentang 96.83 - 98.41% 1.6318-1.7205 96.30-98.12% 

Hasil kelima kali pelatihan menunjukkan konsistensi yang sangat 

tinggi dengan akurasi testing rata-rata sebesar 97.62% (standar 

deviasi: ±0.53%). Rentang akurasi yang dicapai berada antara 96.83% 

hingga 98.41%, dimana model terbaik (dari pelatihan ke-4) berhasil 

mencapai akurasi puncak sebesar 98.41%. Metrik F1-Score makro 

rata-rata sebesar 97.40% (standar deviasi: ±0.60%) mengkonfirmasi 

keseimbangan yang bagus antara precision dan recall di semua kelas. 

Analisis per kelas menunjukkan performa yang baik (100% precision, 

recall, dan F1-Score) untuk kelas mobil dan motor pada hampir semua 

pelatihan, sementara kelas bus dan truk juga menunjukkan konsistensi 

tinggi dengan F1-Score masing-masing di atas 90. 

Untuk memperjelas distribusi prediksi antar kelas, dilakukan 

visualisasi menggunakan confusion matrix seperti gambar 4.5. 
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Figure 4.5 Confusion Matrix 

Gambar 4.5 menunujukkan bahwa model berhasil mengklasifikasikan 

semua kelas kendaraan dengan tingkat akurasi tinggi. Kelas mobil dan 

motor terdeteksi sempurna tanpa kesalahan prediksi, sedangkan 

terdapat kesalahan minor pada kelas truk yang terklasifikasi sebagai 

bus sebanyak tiga sampel. Kelas bus juga menunjukkan performa 

tinggi dengan hanya sedikit kesalahan klasifikasi. Secara keseluruhan, 

distribusi prediksi pada confusion matrix ini mengonfirmasi hasil 

metrik kuantitatif pada Tabel 4.1 bahwa model memiliki kemampuan 

generalisasi yang sangat baik untuk semua kelas kendaraan. 

2. Pengujian Komunikasi Telegram 

Selain pengujian akurasi model, dilakukan juga pengujian terhadap 

kinerja sistem secara end-to-end, khususnya pada aspek kecepatan dan 

keandalan komunikasi notifikasi real-time melalui platform Telegram. 

Pengujian dilakukan untuk semua kelas kendaraan (truk, bus, mobil, 

motor) dengan mengukur waktu respons sejak sistem mendeteksi 

kendaraan hingga notifikasi berhasil diterima oleh petugas keamanan. 

 

Table 4.2 Kecepatan Notifikasi Telegram 

Kelas Pesan Teks Gambar Total 

Truk 1.347s 1.974 3.322s 

Bus 1.317s 3.161s 4.480s 
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Mobil 1.240s 2.234s 3.477s 

Motor 1.143s 1.734s 2.879s 

Rata-rata 1.262s 2.276s 3.539s 

rentang 1.14-1.35s 1.73-3.16s 2.88-4.48s  

Hasil pengujian yang dilakukan sebanyak 4 kali (setiap kelas 

kendaraan) menunjukkan performa yang sangat responsif dan 

konsisten. Rata-rata waktu pengiriman notifikasi ke Telegram adalah 

3.54 detik, dengan rentang waktu antara 2.88 hingga 4.48 detik 

tergantung jenis kendaraan. Performa tercepat dicapai oleh kelas 

motor dengan waktu 2.88 detik, sementara kelas bus memerlukan 

waktu paling lama yaitu 4.48 detik. Selisih waktu ini dipengaruhi oleh 

faktor jaringan dan ukuran file gambar yang dikirim. 

Secara detail, proses pengiriman notifikasi terbagi menjadi dua tahap: 

pengiriman pesan teks (rata-rata 1.26 detik) dan pengiriman gambar 

(rata-rata 2.28 detik). Hasil ini membuktikan bahwa komunikasi 

Telegram hanya menggunakan 35% dari total alokasi waktu 10 

detik yang ditetapkan dalam kebutuhan non-fungsional, sehingga 

tidak menjadi bottleneck dalam sistem secara keseluruhan. 

Keandalan sistem juga terbukti dengan tingkat keberhasilan 

pengiriman 100% pada semua percobaan. Sistem secara konsisten 

mengirimkan notifikasi ke petugas keamanan untuk semua jenis 

kendaraan, dan notifikasi tambahan ke admin khusus untuk kendaraan 

bertipe truk. Dengan demikian, sistem notifikasi Telegram 

dinyatakan sangat memadai untuk aplikasi real-time dan siap 

diimplementasikan dalam lingkungan produksi. 

3. Arsitektur Model Klasifikasi Kendaraan 

Arsitektur model yang digunakan dalam penelitian ini berbasis 

MobileNetV2, yang di-fine-tune untuk mendeteksi empat kelas 

kendaraan: bus, mobil, motor, dan truk. Model ini terdiri dari total 2.75 

juta parameter, dengan 164.484 parameter trainable dan 2.257.984 

parameter non-trainable, seperti ditunjukkan pada Gambar 4.6. 



70 

 

 

Figure 4.6 Model Summary 

Model diawali dengan feature extractor dari MobileNetV2 (layer 

convolutional) sebagai base model, diikuti oleh Global Average 

Pooling 2D untuk mereduksi dimensi fitur. Selanjutnya, ditambahkan 

dua Dropout layer untuk mencegah overfitting, serta dua Dense layer 

dengan ukuran 128 neuron (ReLU) dan 4 neuron (Softmax) untuk 

klasifikasi akhir. 
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Figure 4.7 Diagram Model Summary 

Struktur ini dipilih karena efisien secara komputasi dan optimal untuk 

implementasi di perangkat edge seperti ESP32-CAM atau sistem real-

time. Dengan jumlah parameter yang relatif kecil (10.5 MB), model 

tetap mampu mencapai akurasi tinggi seperti ditunjukkan pada bagian 

hasil pengujian. 

4. Perbandingan Precision, Recall, dan F1-Score per Kelas 

Untuk melihat performa model secara lebih komprehensif, dilakukan 

visualisasi perbandingan nilai precision, recall, dan F1-score pada 

setiap kelas, yaitu bus, mobil, motor, dan truk. Visualisasi ini 

membantu dalam menilai konsistensi kinerja model pada tiap kategori 

kendaraan 
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Figure 4.8 Perbandingan Precision, Recall, dan F1-Score per 

kelas 

Berdasarkan Gambar 4.8, dapat dilihat bahwa ketiga metrik utama 

menunjukkan hasil yang tinggi pada semua kelas dengan nilai 

mendekati 1.0. Kelas mobil dan motor memperoleh nilai precision, 

recall, dan F1-score sempurna (1.0), menunjukkan kemampuan model 

yang sangat baik dalam mengidentifikasi kedua kelas tersebut tanpa 

kesalahan. 

Sementara itu, kelas bus memiliki nilai precision sedikit lebih rendah 

(sekitar 0.87), namun tetap menunjukkan kinerja yang sangat baik 

dengan recall sempurna (1.0). Kelas truk juga memperlihatkan hasil 

yang kuat dengan nilai F1-score sekitar 0.96. 

Secara keseluruhan, grafik ini memperkuat bahwa model yang 

dibangun telah mampu mengklasifikasikan citra kendaraan dengan 

tingkat keakuratan yang tinggi dan performa yang stabil di seluruh 

kelas. 

Berdasarkan hasil pengujian yang telah dilakukan, dapat 

disimpulkan bahwa model klasifikasi citra kendaraan berbasis MobileNetV2 

menunjukkan performa yang sangat baik. Hasil evaluasi dari confusion 

matrix menunjukkan tingkat prediksi yang akurat pada hampir semua kelas 

dengan jumlah kesalahan yang sangat minim. Nilai precision, recall, dan 

F1-score rata-rata yang mendekati 1.0 memperkuat bahwa model mampu 
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membedakan setiap kelas (bus, mobil, motor, dan truk) dengan konsistensi 

tinggi. 

Selain itu, arsitektur model yang diimplementasikan dengan 

kombinasi MobileNetV2 sebagai base model yang dibekukan (frozen layer), 

diikuti oleh lapisan Global Average Pooling, Dropout, dan Dense layer 

dengan ReLU serta Softmax activation, terbukti efisien dengan jumlah 

parameter yang relatif ringan namun tetap memberikan hasil optimal. 

Grafik perbandingan metrik menunjukkan bahwa performa model 

seimbang di semua kelas tanpa adanya dominasi atau ketimpangan yang 

signifikan. Hal ini menandakan model memiliki generalisasi yang baik 

terhadap data uji. 

Secara keseluruhan, model yang dikembangkan telah berhasil 

mencapai tujuan pengujian, yaitu menghasilkan sistem klasifikasi kendaraan 

dengan tingkat akurasi tinggi, performa stabil, dan efisiensi komputasi yang 

baik, sehingga layak digunakan sebagai komponen utama dalam sistem 

pengenalan citra kendaraan berbasis deep learning. 

4.5 Analisis Performa Sistem 

Setelah dilakukan pengujian sistem pada subbab 4.4, langkah selanjutnya 

adalah menganalisis hasil tersebut untuk mengetahui sejauh mana sistem 

klasifikasi kendaraan yang dibangun mampu memenuhi kebutuhan performa, baik 

dari sisi akurasi, efisiensi komputasi, maupun kecepatan komunikasi. Analisis ini 

dilakukan untuk memperoleh pemahaman menyeluruh mengenai keunggulan, 

stabilitas, dan kemampuan sistem dalam mendukung operasi real-time. 

Secara umum, hasil pengujian pada bagian sebelumnya menunjukkan 

bahwa model berbasis MobileNetV2 memberikan performa yang sangat baik 

dengan rata-rata akurasi sebesar 97.62%, macro F1-score sebesar 97.40%, serta 

standard deviation yang rendah (±0.53%). Nilai-nilai tersebut menunjukkan 

konsistensi tinggi dan kemampuan generalisasi model terhadap data uji. 

Untuk menganalisis performa secara lebih spesifik, dilakukan evaluasi 

terhadap tiga aspek utama, yaitu kecepatan inferensi model, akurasi per kelas 

kendaraan, dan latency notifikasi Telegram. Analisis berikut ini bertujuan untuk 
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menginterpretasikan hasil pengujian tersebut dalam konteks efisiensi dan 

keandalan sistem secara end-to-end. 

4.5.1 Analisis Kecepatan Inferensi 

Berdasarkan hasil pengujian yang dilakukan pada Subbab 4.4.3, 

kecepatan inferensi model dapat dianalisis melalui pendekatan tidak 

langsung mengingat data waktu inferensi per gambar tidak diukur secara 

terpisah. Namun, beberapa indikator performa dapat diidentifikasi dari data 

yang tersedia. 

1. Analisis Berdasarkan Arsitektur Model: 

Berdasarkan Gambar 4.6 dan 4.7 pada Subbab 4.4.3, model yang 

digunakan adalah MobileNetV2 dengan konfigurasi sebagai berikut: 

a. Total parameter: 2.75 juta 

b. Parameter yang dapat ditraining: 164,484 

c. Parameter non-trainable: 2,257,984 

Konfigurasi ini mengindikasikan model yang efisien secara 

komputasi, dimana sebagian besar layer base model dibekukan 

(frozen) dan hanya layer fully connected akhir yang ditraining ulang. 

Pendekatan ini tidak hanya mengurangi risiko overfitting tetapi juga 

mempertahankan kecepatan inferensi yang optimal. 

2. Analisis Berdasarkan Hasil End-to-End Latency: 

Data dari Tabel IV.2 pada Subbab 4.4.3 menunjukkan total latency 

sistem sebesar 3.539 detik rata-rata, dengan breakdown: 

a. Pengiriman pesan teks: 1.262 detik 

b. Pengiriman gambar: 2.276 detik 

Dengan asumsi bahwa waktu untuk preprocessing gambar dan 

inferensi model termasuk dalam komponen pengiriman gambar, dapat 

disimpulkan bahwa waktu yang dialokasikan untuk inferensi sangat 

singkat, mengingat proses pengiriman gambar melalui jaringan 

biasanya dominan dalam konsumsi waktu. 

3. Kesesuaian dengan Target Real-time:  
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Sistem berhasil mencapai total latency 3.539 detik yang jauh di bawah 

batas maksimum 10 detik yang ditetapkan. Pencapaian ini 

mengindikasikan bahwa kecepatan inferensi model telah memadai 

untuk aplikasi real-time di lingkungan CV. Indah Jaya Sentosa. 

Table 4.3 Analisis Waktu 

Komponen Sistem Perkiraan Kontribusi 

Waktu 

Faktor Pengaruh 

Prepocessing & 

Inferenc 

< 1.0 detik Optimasi 

MobileNetV2 

Pengiriman Pesan 

Teks 

1.262 detik Konektivitas 

jaringan 

Pengiriman 

Gambar 

2.276 detik Ukuran file & 

jaringan 

Total  3.539 detik - 

Meskipun data waktu inferensi eksplisit tidak tersedia, analisis tidak 

langsung melalui arsitektur model dan pencapaian latency end-to-end 

menunjukkan bahwa kecepatan inferensi sistem telah memenuhi 

requirements untuk aplikasi klasifikasi kendaraan real-time. Efisiensi 

MobileNetV2 yang terbukti secara empiris dalam penelitian lain, 

combined dengan hasil latency yang excellent, mengkonfirmasi 

kecukupan performa inferensi sistem. 

4.5.2 Analisis Akurasi per Kelas Kendaraan 

Berdasarkan hasil pengujian akurasi model pada Subbab 4.4.3, 

performa model across semua kelas menunjukkan hasil yang exceptional 

dengan akurasi rata-rata 97.62% dan F1-Score makro 97.40% seperti 

terlihat pada Tabel 4.1. 

1. Analisis Detail per Kelas: 

Berdasarkan Gambar 4.8 pada Subbab 4.4.3 (Perbandingan Precision, 

Recall, dan F1-Score), dapat diidentifikasi performa model untuk 

setiap kelas kendaraan: 
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A. Kelas Mobil dan Motor 

a. Menunjukan performa sempurna dengan precision, recall, dan 

F1-score = 1.0 

b. Indikasi bahwa model sangat pandai membedakan fitur-fitur 

distintif kedua kelas ini 

c. Dataset yang seimbang dan fitur yang jelas berkontribusi 

terhadap hasil ini 

B. Kelas Bus 

a. Recall 1.0 namun precision ~0.87 

b. Model sangat baik dalam mendeteksi semua instance bus yang 

ada (tidak ada false negative) 

c. Namun, terdapat beberapa false positive dimana kendaraan lain 

diklasifikasikan sebagai bus 

C. Kelas Truk 

a. F1-Score ~0.96 menunjukkan keseimbangan yang baik antara 

precision dan  

b. Beberapa kesalahan klasifikasi dengan bus, yang dapat 

dimengerti mengingat kemiripan visual antara recall truk besar 

dan bus 

2. Analisis Kesalaan Klasifikasi 

Berdasarkan Gambar 4.5 (Confusion Matrix) pada Subbab 4.4.3, 

kesalahan utama terjadi pada: 

a. sampel truk yang terdeteksi sebagai bus 

b. Tidak ada kesalahan klasifikasi untuk kelas mobil dan motor 

c. Kesalahan ini dapat dimaklumi mengingat kemiripan visual 

antara truk besar dan bus dalam sudut tertentu 

Table 4.4 Rincian Performa Model 

Kelas Precision Recall F1-Score Analisa 

Mobil 1.00 1.00 1.00 Baik 

Motor 1.00 1.00 1.00 Baik 
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Bus 0.87 1.00 0.93 Ada minor 

false 

Truk 0.93 1.00 0.96 Cukup 

baik 

3. Faktor Pendukung Keberhasilan: 

a. Distribusi dataset yang seimbang seperti pada Gambar 

4.4 (Subbab 4.4.1) 

b. Teknik augmentasi data selama training 

c. Arsitektur MobileNetV2 yang sesuai untuk tugas klasifikasi 

gambar 

d. Proses training yang konsisten dengan standar deviasi rendah 

(±0.53%) 

Model menunjukkan kemampuan klasifikasi yang bagus dengan 

akurasi overall 97.62%. Performa sempurna pada kelas mobil dan motor, 

serta performa sangat baik pada kelas bus dan truk membuktikan bahwa 

sistem layak untuk diimplementasikan dalam lingkungan produksi. Minor 

kesalahan klasifikasi antara bus dan truk tidak mengganggu fungsionalitas 

utama sistem secara signifikan. 

4.5.3 Analisis Latency Notifikasi 

Analisis latency notifikasi bertujuan untuk mengevaluasi seberapa 

cepat sistem dapat memberikan respons terhadap peristiwa yang terjadi di 

lapangan, mulai dari proses deteksi kendaraan hingga pesan notifikasi 

diterima oleh pengguna melalui aplikasi Telegram. Aspek ini sangat penting 

karena menentukan tingkat keandalan sistem dalam konteks operasi real-

time di lingkungan CV. Indah Jaya Sentosa. 

1. Rincian Hasil Pengujian Latency 

Berdasarkan hasil pengujian yang ditampilkan pada Tabel 4.2 di 

Subbab 4.4.3, rata-rata waktu pengiriman notifikasi tercatat sebesar 

3.539 detik, dengan rentang waktu antara 2.879 hingga 4.480 detik 

tergantung pada jenis kendaraan. Waktu ini merupakan total durasi 

sejak kamera menangkap citra kendaraan hingga notifikasi diterima 
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pengguna di Telegram. 

Rincian waktu per tahap pengiriman dapat dilihat sebagai berikut: 

Table 4.5 Rincian Waktu Notifikasi 

Tahap Pengiriman Rata-rata Waktu (s) Presentase total 

Pesan Teks 1.262 35.6% 

Pengiriman Gambar 2.276 64.4% 

Total Rata-rata 3.539 100% 

 

Dari tabel tersebut, terlihat bahwa proses pengiriman gambar 

berkontribusi paling besar terhadap total waktu respon sistem. Hal ini 

dapat dimaklumi karena ukuran data gambar lebih besar dibanding 

pesan teks, sehingga memerlukan waktu unggah lebih lama, terutama 

bergantung pada kualitas jaringan. 

2. Visualisasi Grafik Latency 

Untuk memperjelas hasil pengujian, Gambar 4.9 berikut 

memperlihatkan grafik waktu komunikasi yang dibutuhkan untuk 

setiap file gambar yang dikirim ke Telegram.

 

     Figure 4.9 Diagram Latency 

Grafik tersebut menunjukkan bahwa setiap file gambar memiliki 

waktu pengiriman yang berbeda-beda, dengan rata-rata antara 2,48 

hingga 4,76 detik. Variasi ini disebabkan oleh perbedaan ukuran file, 

kompleksitas warna, serta kondisi jaringan saat proses unggah 
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berlangsung. Meskipun demikian, seluruh waktu pengiriman masih 

berada di bawah ambang batas 5 detik, sehingga dapat dikategorikan 

sangat responsif. 

3. Analisi Berdasarkan Jenis Kendaraan 

Hasil pengujian menunjukkan variasi waktu respon antar kelas 

kendaraan sebagai berikut: 

Table 4.6 Waktu Respon 

Kelas Kendaraan Total Waktu (detik) Analisi 

Motor 2.879 Respon tercepat 

karena file kecil 

Mobil 3.477 Waktu Stabil 

Truk 3.322 Sedikit lebih cepat 

dari mobil 

Bus 4.480 Waktu terlama 

 

Perbedaan waktu antar kelas kendaraan relatif kecil (<2 detik) dan 

masih jauh di bawah batas maksimum 10 detik yang ditetapkan dalam 

spesifikasi sistem. Dengan demikian, performa sistem masih 

memenuhi kebutuhan real-time communication yang diharapkan. 

Berdasarkan keseluruhan hasil, sistem notifikasi real-time berbasis 

Telegram dinyatakan sangat layak digunakan dalam lingkungan operasional 

CV. Indah Jaya Sentosa. Waktu respon rata-rata yang hanya 3.5 detik 

menunjukkan bahwa sistem mampu memberikan informasi secara cepat dan 

andal, memastikan petugas keamanan dapat segera mengetahui setiap 

pergerakan kendaraan yang terdeteksi oleh sistem klasifikasi. 

Selain itu, kombinasi arsitektur jaringan yang ringan, efisiensi 

kompresi gambar, dan kestabilan API Telegram menjadikan sistem ini tidak 

hanya cepat tetapi juga mudah diintegrasikan untuk pengembangan lebih 

lanjut seperti penambahan fitur deteksi plat nomor atau manajemen log 

notifikasi otomatis. 



80 

 

4.6 Analisis dan Pembahasan 

Analisis dilakukan untuk mengevaluasi kinerja sistem klasifikasi 

kendaraan yang dikembangkan menggunakan model MobileNetV2 serta integrasi 

pengiriman notifikasi otomatis melalui Telegram Bot. Pengujian dilakukan dalam 

dua aspek utama, yaitu akurasi hasil klasifikasi dan waktu respon pengiriman 

notifikasi dari hasil inferensi model ke aplikasi Telegram. 

4.6.1 Analisis Metrik Evaluasi Model 

Model klasifikasi kendaraan diuji menggunakan data uji (testing 

dataset) untuk mengetahui tingkat akurasi, presisi, dan sensitivitas sistem. 

Hasil pengujian menghasilkan nilai akurasi sebesar 97,35%, presisi rata-rata 

96,88%, dan recall 97,10%.  

Selain itu, hasil confusion matrix menunjukkan bahwa sebagian 

besar prediksi model sesuai dengan label aslinya, dengan sedikit kesalahan 

pada kelas Truk dan Bus yang memiliki kemiripan bentuk.  

Sebagai bukti hasil inferensi model secara visual, Gambar 4.10 

memperlihatkan hasil klasifikasi kendaraan secara real-time pada antarmuka 

sistem. 

 

Figure 4.10 Hasil Prediksi 

4.6.2 Analisis Kinerja Sistem 

Analisis ini dilakukan untuk mengetahui kinerja sistem secara 

keseluruhan mulai dari proses klasifikasi hingga pengiriman notifikasi. 
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Pengujian dilakukan dengan mengukur waktu yang dibutuhkan sejak model 

menyelesaikan prediksi hingga notifikasi diterima di aplikasi Telegram. 

Sistem berjalan melalui tahapan berikut: 

1. Pengguna mengunggah citra kendaraan ke server atau direktori 

pengujian. 

2. Model MobileNetV2 melakukan klasifikasi terhadap citra tersebut. 

3. Hasil klasifikasi dikirim ke Telegram Bot melalui API. 

4. Bot mengirimkan notifikasi ke akun Telegram yang dituju. 

Rata-rata waktu pengiriman pesan dari proses prediksi hingga 

diterima di Telegram adalah 2–5 detik, tergantung kondisi jaringan dan 

beban sistem. Hal ini menunjukkan bahwa integrasi antara Python script dan 

Telegram Bot API bekerja dengan baik dan efisien. Gambar 4.11 

memperlihatkan grafik hasil pengujian waktu respon pengiriman notifikasi 

dari beberapa sampel uji. 

 

Figure 4.11 Diagram Latency 

4.6.3 Analisis Notifikasi Telegram 

Fitur notifikasi Telegram berperan penting dalam penyampaian hasil 

klasifikasi kendaraan secara real-time. Sistem ini dibangun menggunakan 

Telegram Bot API dengan format pesan yang telah disesuaikan agar 

informatif, cepat dibaca, dan mudah dibedakan berdasarkan status 

kendaraan. 
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Dalam implementasi ini, terdapat dua skenario pengiriman notifikasi: 

A. Notifikasi kepada Securiy 

Pada skenario pertama, sistem dikonfigurasi agar notifikasi dikirimkan 

hanya kepada pihak security. Setelah model klasifikasi menyelesaikan 

proses identifikasi jenis kendaraan, sistem secara otomatis mengirimkan 

pesan ke akun Telegram milik petugas keamanan. 

Pesan yang diterima berisi informasi hasil klasifikasi, tingkat 

kepercayaan (confidence score), serta probabilitas setiap kelas 

kendaraan (misalnya truck, bus, motor, dan mobil). Tampilan pesan juga 

dilengkapi dengan citra kendaraan hasil klasifikasi sehingga petugas 

dapat langsung melakukan validasi visual terhadap hasil yang diterima. 

 

Figure 4.12 Notifikasi Kendaraan ke Security 

Gambar 4.12 menunjukkan contoh notifikasi ketika sistem mengenali 

kendaraan yang bukan truck dengan tingkat keyakinan sebesar 99.94%. 

Informasi probabilitas setiap kelas ditampilkan secara rinci sehingga 

pihak security dapat menilai keakuratan hasil model. Berdasarkan 

pengujian, rata-rata waktu pengiriman pesan dari sistem ke Telegram 
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berkisar antara 1–3 detik, menandakan bahwa integrasi Telegram Bot 

API bekerja dengan baik dan responsif. 

B. Notifikasi kepada Security dan Admin 

Skenario kedua dilakukan ketika kendaraan yang terdeteksi adalah truck. 

Dalam kondisi ini, sistem mengirimkan notifikasi kepada dua pihak 

sekaligus, yaitu security dan admin perusahaan. Notifikasi ini berfungsi 

sebagai sistem keamanan awal ke petugas security dan kepada admin. 

Pesan yang diterima kedua pihak berisi hasil klasifikasi, confidence 

score, waktu pengambilan gambar dan citra kendaraan. 

Dengan adanya notifikasi ini, admin dapat segera melakukan 

pemeriksaan data kendaraan. 

 

Figure 4.14 Notifikasi Admin 

Melalui hasil pengujian pada skenario ini, sistem terbukti mampu 

menjalankan fungsinya dengan baik, mengirimkan dua pesan terpisah ke 

Figure 4.13 Notifikasi Security 
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akun berbeda dalam waktu hampir bersamaan. Hal ini menunjukkan bahwa 

sistem notifikasi berbasis Telegram Bot telah beroperasi secara stabil dan 

efisien dalam mendukung sistem klasifikasi kendaraan berbasis kecerdasan 

buatan yang dikembangkan. 
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BAB V  

KESIMPULAN DAN SARAN 

5.1 Kesimpulan 

Bab ini menyajikan kesimpulan akhir dari keseluruhan proses penelitian 

dan implementasi sistem klasifikasi kendaraan berbasis deep learning yang 

terintegrasi dengan Telegram Bot API. Kesimpulan disusun berdasarkan batasan 

penelitian yang telah ditetapkan, yaitu hanya berfokus pada pelatihan model 

klasifikasi gambar kendaraan dan sistem notifikasi digital. 

5.1.1 Pencapaian Research Questions 

Penelitian ini dirancang untuk menjawab beberapa pertanyaan utama yang 

dirumuskan pada Bab I. Berdasarkan hasil pengujian dan analisis pada Bab 

IV, seluruh pertanyaan penelitian (research questions) telah terjawab secara 

komprehensif. 

1. Research Question: Bagaimana membangun model deep learning 

yang mampu mengklasifikasikan jenis kendaraan dari citra visual? 

Hasil dan Jawaban Penelitian: Model MobileNetV2 berhasil 

diimplementasikan dengan akurasi rata-rata 97.62% pada empat kelas 

kendaraan (bus, mobil, motor, dan truk). Model menunjukkan 

stabilitas performa dengan deviasi ±0.53%. 

2. Research Question: Bagaimana performa model klasifikasi dalam 

kondisi data uji nyata dan apakah sesuai dengan target akurasi di atas 

90%? 

Hasil dan Jawaban Penelitian: Hasil pengujian menggunakan testing 

set menunjukkan performa konsisten di seluruh kelas, dengan nilai F1-

score makro sebesar 97.40%, jauh melampaui target 90%. 

3. Research Question: Bagaimana sistem mengirimkan hasil klasifikasi 

kendaraan secara otomatis ke pengguna melalui Telegram Bot API? 

Hasil dan Jawaban Penelitian: Integrasi Telegram Bot berhasil 

dilakukan dengan tingkat keandalan yang sangat baik. Notifikasi 

dikirim dalam dua skenario: (1) semua kendaraan akan dikirim ke 

telegram security, dan (2) kendaraan jenis truck akan dikirimkan juga 



86 

 

ke telegram admin 

4. Research Question: Apakah waktu pengiriman notifikasi memenuhi 

batas maksimum latency 10 detik yang ditetapkan dalam kebutuhan 

sistem? 

Hasil dan Jawaban Penelitian: Hasil pengujian menunjukkan waktu 

rata-rata pengiriman 3.539 detik (pesan teks: 1.262 detik; gambar: 

2.276 detik), sehingga sistem sepenuhnya memenuhi target real-time 

< 10 detik. 

5.1.2 Kontribusi untuk Perusahaan 

Penelitian ini memberikan kontribusi nyata bagi CV. Indah Jaya 

Sentosa dalam meningkatkan efisiensi dan efektivitas proses monitoring 

kendaraan di lingkungan perusahaan. 

Dengan adanya sistem ini, proses identifikasi jenis kendaraan kini 

dapat dilakukan secara otomatis, cepat, dan akurat, menggantikan metode 

manual yang sebelumnya bergantung pada pengamatan manusia. 

Beberapa manfaat konkret yang dihasilkan antara lain: 

1. Efisiensi Waktu: Sistem mampu mengenali kendaraan dan 

mengirimkan notifikasi dalam waktu kurang dari 4 detik rata-rata. 

2. Akurasi Identifikasi: Penggunaan model MobileNetV2 menghasilkan 

klasifikasi yang presisi dengan tingkat akurasi di atas 97%. 

3. Notifikasi Real-Time: Petugas keamanan dan admin dapat langsung 

menerima informasi kendaraan yang terdeteksi tanpa harus memantau 

sistem secara terus-menerus. 

4. Kemudahan Integrasi: Sistem berbasis Telegram Bot API tidak 

memerlukan infrastruktur tambahan, sehingga mudah 

diimplementasikan dan diperluas di lingkungan operasional 

perusahaan. 

Dengan demikian, sistem yang dikembangkan berkontribusi signifikan 

terhadap efisiensi kerja petugas keamanan, peningkatan responsivitas, dan 

otomatisasi proses identifikasi kendaraan di area perusahaan. 
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5.1.3 Pencapaian Teknis Sistem 

Berdasarkan batasan penelitian yang hanya mencakup 

pengembangan model dan integrasi perangkat lunak, pencapaian teknis 

sistem dapat disimpulkan sebagai berikut: 

Table 5.1 Pencapaian Teknis 

Aspek Teknik Target Kinerja Hasil Pengujian Status 

Akurasi Model > 90% 97.62% Tercapai 

F1-Score Makro > 90% 97.40% Tercapai 

Latency < 10 detik 3.539 detik Tercapai 

Notifikasi > 95% 95% berhasil Tercapai 

Kosistensi Variasi <+ 1% Deviasi 0.53% Tercapai 

 

Dari hasil tersebut, seluruh spesifikasi fungsional dan non-

fungsional sistem berhasil dipenuhi. Sistem menunjukkan performa real-

time, stabil, dan efisien dalam menjalankan proses klasifikasi serta 

pengiriman hasil melalui Telegram Bot API. 

5.2 Saran 

Meskipun sistem telah memenuhi semua batasan dan target penelitian, 

beberapa hal dapat dikembangkan di masa mendatang untuk memperluas 

cakupan fungsionalitas, di antaranya: 

1. Integrasi OCR (Optical Character Recognition): Menambahkan fitur 

pembacaan plat nomor kendaraan untuk mengidentifikasi kendaraan 

secara spesifik. 

2. Ekspansi Dataset: Mengumpulkan data citra kendaraan dari berbagai 

kondisi pencahayaan dan sudut agar model lebih tangguh terhadap variasi 

lingkungan. 

3. Pengembangan Aplikasi Web Dashboard: Menampilkan hasil klasifikasi 

dan log notifikasi secara historis untuk keperluan pelacakan aktivitas 

kendaraan. 

4. Optimasi Model Edge-Device: Mengadaptasi model ke format ringan 
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(TensorFlow Lite) agar dapat dijalankan di perangkat edge seperti ESP32-

CAM. 

Dengan saran-saran tersebut, sistem dapat dikembangkan menjadi solusi yang 

lebih komprehensif dan siap diterapkan secara penuh di lapangan untuk 

mendukung sistem keamanan perusahaan berbasis kecerdasan buatan. 

5.2.1 Kesimpulan Akhir 

Berdasarkan hasil implementasi dan pengujian, sistem klasifikasi 

kendaraan berbasis MobileNetV2 yang diintegrasikan dengan Telegram 

Bot API telah berhasil memenuhi seluruh target penelitian sesuai batasan 

yang ditetapkan. Sistem terbukti akurat, cepat, dan andal, serta 

memberikan kontribusi nyata dalam meningkatkan efisiensi monitoring 

kendaraan di lingkungan perusahaan. 
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